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Problems Solved: ’ 21 \ 22 \ 23 \ 24 \ 25 ‘

Name:

Matrikel-Nr.:

Problem 21. Let ¥ = {a,b}. We encode a and b on the input tape of a RAM
by 1 and 2 and a word w € ¥* by a respective sequence of 1’s and 2’s.

We say that a RAM R accepts a word w € ¥* if R starts with the coded word
w on its input tape and terminates after having written a non-zero number on
its output tape. We define L(R) := {w € ¥* | R accepts w }.

Let F' be a RAM that terminates for every input and whose program does not
contain “loops”, i.e., each instruction is executed at most once.

Derive answers for the following questions. (Give ample justifications, just saying
‘yes’ or ‘no’ is not enough.)

1. Is L(F) as a language over ¥ finite?

2. Is L(F) as a language over X regular?

Solution of Problem 21:

1. No. The Program (LOAD #1; OUT; JUMP 0) accepts all possible words.

2. Yes. The RAM can only read finitely many letters from the input tape,
since there are only finitely many commands that can be executed. Let's
say n is the number of IN commands. So after reading at most n letters,
the RAM must have decided whether or not the word is accepted. There
are only finitely many words of length at most n. Let wy,ws,...,wy be
the words of length at most n that will be accepted. Among those are
words w.l.o.g. wy,ws,...,w, with r < k for which the RAM will read
a space on the input tape after the word. So the input word has ended.
For the words w,.y1,...,wy it is not clear whether some further letters
follow. So the corresponding regular expression is.

wy + - we + (Weg1 - Fw) - (a+ D).

Problem 22. Write a RAM program that from a given natural number n prints
its binary representation. In order to simplify the problem the output shall be
in low positions first format, i.e., the number 89 is 00015 but not 1000,.

Hint: please note that the computation of the quotient respectively remainder
of a division by 2 can be implemented by the repeated subtraction of 2.

Solution of Problem 22:

START: LOAD #0 ; Load 0 to the accum
STORE 2 ; write O to R[2], d := 0
IN ; R[1] :=n

DIV2: BEQ O, WRITE
BEQ 1, WRITE
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SUB #2 ; n = n-2
STORE 1 ; R[1] :=n
LOAD 2 ; load d into accum
ADD #1 ; d o= d+1
STORE 2 ; R[1] :=d
LOAD 1 ; load new n into accum
JUMP DIV2
WRITE: OUT ; write O or 1 to the output
LOAD 2 ; load d into accum
BEQ O, END
BEQ 1, PRINTd
STORE 1 ; no:=d
LOAD #0
STORE 2 ; d =0
LOAD 1 ; load n into accum
JUMP DIV2
PRINTd: OUT ; write 1 to the output
END: JUMP O

Problem 23. In the following use only the definition of a loop program as given
in Def. 23 of the lecture notes, Section 3.2.2. Note that it is not allowed to use
abbreviations like

Xj = Xj — Xk;
Xi = Xj + Xk;

Furthermore, the variables in a loop program are only xg, z1,...

1. Show that the function

( ) 1 if 21 < @9,
s(x1,T2) = .
! 0 otherwise

is loop computable. I.e. give an explicit loop program for s.

2. Write a loop program that computes the function d : N> — N where
d(x1,x9) is k € N such that k- (xo +1) = 21 + 1 if such a k exists. The
result is d(x1,x2) = 0, if a k with the above property does not exist.

For simplicity in the program for d, you are allowed to use a construction
like the following (with the obvious semantics) where P is an arbitrary
loop program.

IF x; < x; THEN P END;

Note: Only < is allowed in the condition and there must be a variable
before and a variable after the < sign and 1 < z; is not allowed. Note also
that there is no “ELSE” branch.

Solution of Problem 23:
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s(x1,z0) ==
LOOP x; DO
Xg = Xo — 1;
END;
xo = 0
LOOP x2 DO
Xo = 0;
Xo = Xo + 1;
END;
d(acl,a:g) ==
X1 = x1+1;
X9 = Xo+1;
x3 = 0;
xo = 0;
LOOP x; DO

IF x3 < x1 THEN
LOOP x», DO x3 := x3 + 1; END;

Xo = Xo + 1;
END;
END;
IF x;1 < x3 THEN
xo = 0;
END;

Problem 24. Provide a loop program that computes the function f(n) =
> p_q k(k+ 1), and thus show that f is loop computable.

You are only allowed to use the constructs given in Definition 23 of the lecture
notes.

Solution of Problem 24:

xo = 0;

LOOP x; DO
LOOP x; DO LOOP x; DO xg := xo + 1 END END;
LOOP x; DO xo := xo + 1 END:;
X1 = X1 — 1

END

Problem 25. Suppose P is a while-program that does not contain any WHILE
statements, but might modify the values of the variables x; and 5.

Transform the following program into Kleene’s normal form.
Hint: first translate the program into a goto program, replace the GOTOs by
assignments to a control variable, and add the WHILE wrapper.

Xo = 0

WHILE x; DO
X1 = x1 — 1;
X2 = X1,
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Solution of Problem 25:

First the translation into the goto-program.

xo = 0

L10: IF x; = 0 GOTO L11;
X1 = x1 — 1;
X2 = X1,

L20: IF x3 = 0 GOTO L21;
P;
GOTO L20;

L21: GOTO L10

L11: x9 (= xo + 1

Replace goto by assignment to x. and add more labels.

L1: xo := 0

L10: IF x; = 0 THEN x. = 11;
L2: x; = x1 — 1;

L3: x2 = x1;

L20: IF x2 = 0 THEN x. := 21;
L4: P;

L5: x. := 20;

L21: x. := 10;

L11: x¢o = xo + 1

Add the while wrapper.

Xe =
WHILE x. DO
IF Xxc = 1 THEN x. := 10; xo = 0
else IF x. = 10 THEN x. := 2; IF x; = 0 THEN x. := 11; END;
else IF xc = 2 THEN x. = 3; x; = x1 — 1;
else IF xc = 3 THEN x. := 20; x2 := X1;
else IF x. = 20 THEN x. := 4; IF xo = 0 THEN x. := 21; END;
else IF xc. = 4 THEN x. := 5; P;
else IF x. = 5 THEN x. := 21; x. := 20;
else IF x. = 21 THEN x. := 11; x. := 10;
else IF x. = 11 THEN x. = O0; xo := xo + 1;
END IF;
END;
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