Problems Solved:

Name:

Matrikel-Nr.:

RNonDeterministic

Problem 6. Let L be the set of all strings $x \in\{a, b\}^{*}$ with $|x| \geq 3$ whose third symbol from the right is b. For example, babaa and bbb are elements of L, but $b b$ and $b a b a$ are not.

1. Construct the transition graph of a NFSM N such that $L(N)=L$. (4 states are sufficient.)
2. Construct the transition graph of a DFSM D such that $L(D)=L$. (8 states are sufficient.)

Solution of Problem 6:

1. It is clearly enough if N has just 4 states.

2. By naive consideration 16 states should be sufficient (subset construction), but for turning N into a deterministic automaton, it is easily seen that 8 states are sufficient, because q_{0} must be contained in each of the (state-)subsets.
The state name rstu corresponds to the characteristic value of the state set, i.e., 0101 corresponds to $\left\{q_{2}, q_{0}\right\}$. Some arrows are blue for better visibility.

DEAnot-abc Problem 7. Construct the transition graph of a deterministic finite state machine M over $\Sigma=\{a, b, c\}$ such that $L(M)$ consists of all words that do not contain the string $a b c$.
Hint: Start by constructing a nondeterministic finite state machine N that recogizes the words that do contain the string $a b c$. Proceed by converting your nondeterministic machine N to a deterministic machine D that accepts the same language. Now you are left with the task of coming up with a machine M whose language is precisely the complement of the language of D. This can be done by a small modification of D.

Solution of Problem 7:

Problem: Complementing F to get the complement of the language does not work for nondeterministic machines as the one above.
Therefore we first construct a DFSM D that accepts $a b c$ and then construct its complement.
The automaton below can be obtained by applying the subset construction to the one above.

We finally construct the complement.

Problem 8. Construct the transition graph of a deterministic finite state machine $D=(Q, \Sigma, \delta, S, F)$ with alphabet $\Sigma=\{a, b, c\}$, such that the words of $L(D)$ contain an even number of a 's, an odd number of b 's, and an odd number of c 's. For example, $a a b c c c, ~ c a c b a c, ~ a c a b a a b b$ are from $L(D)$ and $b a b c, c c a b a b$, caacbaabba are not from $L(D)$.

Solution of Problem 8:

The graph has a form of a cube with two floors each of which has four states.

NFA2DFA Problem 9. Convert the following NFSM to DFSM. It suffices to give the resulting transition graph.

Solution of Problem 9:

DFSMmin Problem 10. Let the DFSM $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$ be given by $Q=\left\{q_{0}, q_{1}, q_{2}\right\}$, $\Sigma=\{0,1\}, F=\left\{q_{1}, q_{2}\right\}$ and the following transition function $\delta: Q \times \Sigma \rightarrow Q$:

Construct a minimal DFSM D such that $L(M)=L(D)$ using Algorithm Minimize. (cf. Section 2.3 Minimization of Finite State Machines) Provide its transition graph as well.

Solution of Problem 10:

We execute $\operatorname{Minimize}\left(Q, \Sigma, \delta, q_{0}, F\right)$.

1. There are no redundant states.
2. $Q^{\prime}=\operatorname{Partition}\left(Q, \Sigma, \delta, q_{0}, F\right)$
(a) $P:=\left\{\left\{q_{1}, q_{2}\right\},\left\{q_{0}\right\}\right\}$
(b) $S:=P$
(c) $P:=\emptyset$
(d) $p:=\left\{q_{1}, q_{2}\right\}$
(e) $P:=P \cup\left\{[s]_{p}^{S} \mid s \in p\right\}=\left\{\left\{q_{1}, q_{2}\right\}\right\}$
(f) $\left[q_{1}\right]_{p}^{S}=p$
(g) $\left[q_{2}\right]_{p}^{S}=p$
(h) $p:=\left\{q_{0}\right\}$
(i) $P:=P \cup\left\{[s]_{p}^{S} \mid s \in p\right\}=\left\{\left\{q_{1}, q_{2}\right\}\right\} \cup\left\{\left\{q_{0}\right\}\right\}$
(j) $\left[q_{1}\right]_{\left\{q_{0}\right\}}^{S}=p=\left\{q_{0}\right\}$
3. $Q^{\prime}=\left\{\left\{q_{1}, q_{2}\right\},\left\{q_{0}\right\}\right\}$

