Problems Solved:

11 | 12 | 13 | 14 | 15

Name:

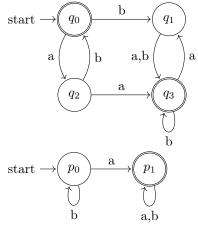
Matrikel-Nr.:

Problem 11. Let $M_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$ and $M_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$ be two DFSM over the alphabet Σ . Let $L(M_1)$ and $L(M_2)$ be the languages accepted by M_1 and M_2 , respectively.

Construct a DFSM $M = (Q, \Sigma, \delta, q, F)$ whose language L(M) is the intersection of $L(M_1)$ and $L(M_2)$. Write down Q, δ, q , and F explicitly.

Hint: M simulates the parallel execution of M_1 and M_2 . For that to work, M "remembers" in its state the state of M_1 as well as the state of M_2 . This can be achieved by defining $Q = Q_1 \times Q_2$.

Demonstrate your construction with the following DFSMs.



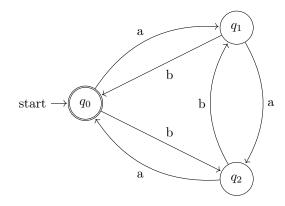
Problem 12. Let m > 1 be a natural number and $r = (a^*b)^m$ be a regular expression.

Definition: If a is a regular expression and n is a natural number, then $a^n = a \cdots a$ is the regular expression that results from the n-fold concatenation of a. For example: $a^3 = aaa$.

Let L_1 and L_2 be the languages defined as follows: $L_1 := L(r), L_2 := \{(a^k b)^m \mid k \in \mathbb{N}\}$. Are L_1 and L_2 regular languages? Provide solid arguments to your answers.

Problem 13. Let M_1 be the DFSM with states $\{q_0, q_1, q_2\}$ whose transition graph is given below. Determine a regular expression r such that $L(r) = L(M_1)$. Show the *derivation* of the the final result by the technique based on Arden's Lemma (see lecture notes).

Berechenbarkeit und Komplexität, WS2020



$$a \cdot a \cdot (b \cdot a)^* \cdot b \cdot b^*$$

Construct a nondeterministic finite state machine N such that L(N) = L(r). Show the derivation of the result by following the technique presented in the proof of the theorem *Equivalence of Regular Expressions and Automata* (see lecture notes).

Problem 15. Show that the language $L = \{a^m b^n \mid m, n \in \mathbb{N} \land m \ge 2n\}$ is not regular.