Problems Solved:

Name:

Matrikel-Nr.:

Problem 6. Let L be the set of all strings $x \in\{a, b\}^{*}$ with $|x| \geq 3$ whose third symbol from the right is b. For example, babaa and $b b b$ are elements of L, but $b b$ and baba are not.

1. Construct the transition graph of a NFSM N such that $L(N)=L$. (4 states are sufficient.)
2. Construct the transition graph of a DFSM D such that $L(D)=L$. (8 states are sufficient.)

Problem 7. Construct the transition graph of a deterministic finite state machine M over $\Sigma=\{a, b, c\}$ such that $L(M)$ consists of all words that do not contain the string $a b c$.
Hint: Start by constructing a nondeterministic finite state machine N that recogizes the words that do contain the string $a b c$. Proceed by converting your nondeterministic machine N to a deterministic machine D that accepts the same language. Now you are left with the task of coming up with a machine M whose language is precisely the complement of the language of D. This can be done by a small modification of D.
Problem 8. Construct the transition graph of a deterministic finite state machine $D=(Q, \Sigma, \delta, S, F)$ with alphabet $\Sigma=\{a, b, c\}$, such that the words of $L(D)$ contain an even number of a 's, an odd number of b 's, and an odd number of c 's. For example, $a a b c c c$, cacbac, $a c a b a a b b$ are from $L(D)$ and $b a b c, c c a b a b$, caacbaabba are not from $L(D)$.
Problem 9. Convert the following NFSM to DFSM. It suffices to give the resulting transition graph.

Problem 10. Let the DFSM $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$ be given by $Q=\left\{q_{0}, q_{1}, q_{2}\right\}$, $\Sigma=\{0,1\}, F=\left\{q_{1}, q_{2}\right\}$ and the following transition function $\delta: Q \times \Sigma \rightarrow Q$:

Construct a minimal DFSM D such that $L(M)=L(D)$ using Algorithm Minimize. (cf. Section 2.3 Minimization of Finite State Machines) Provide its transition graph as well.

