Computability and Complexity Exam January 31, 2020

Wolfgang Schreiner
Wolfgang.Schreiner@risc.jku.at

Family Name:

Given Name:

Matriculation Number:

Study Code:

Total: 100 Points.
≥ 50 Points: GEN4
≥ 63 Points: BEF3
≥ 75 Points: GUT2
≥ 88 Points: SGT1

Please write on the empty sheets/back pages; you may also add additional pages.

1. (20P) Let L be the language over the alphabet $\{0,1\}$ whose words contain 00 and 11 (e.g., 0010111 and 01101001 are in L, but not 001 and not 0101).
a) (5P) Give a regular expression for L.
b) (6P) Define a non-deterministic (not a deterministic) finite state machine ($Q, \Sigma, \delta, S, F)$ whose language is L (the transition function by both a table and a graph).
c) (9P) Define a deterministic finite state machine whose language is L (the transition function by both a table and a graph).
2. (15P) Give a finite state machine over the alphabet $\{a, b, c, d, e\}$ whose language is the language of the following regular expression:

$$
\left(a+(b \cdot c)^{*} \cdot d\right)^{*}+e
$$

It suffices to depict the machine by a graph; show also the crucial intermediate steps of the construction, not only the final result.
3. (10P) Let L be the language of all bit strings that have at most 5 occurrences of bit 1 directly after each other and at most 5 occurrences of bit 0 directly after each other (i.e., 000 and 01111101 are in L but 1000000 is not). Is L regular or not? Justify your answer in detail (hint: the justification does not demand the construction of a concrete state machine for the language).
4. (10P) Is the problem "Does Turing-machine M accept any input?" (i.e., "Is there some word w such that M accepts w ?") semi-decidable? Is it decidable? Justify both of your answers in detail, e.g., by a construction of a Turing machine that takes input $\langle M\rangle$ and (semi-)decides the problem or by arguing why such a machine does not exist.
5. (10P) Take the function $f: \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N}$ defined as

$$
f(y, x):= \begin{cases}0 & \text { if } y+y \geq x \\ 1 & \text { otherwise }\end{cases}
$$

What does the function $(\mu f): \mathbb{N} \rightarrow \mathbb{N}$ compute? Is (μf) LOOP-computable? If not, argue why not. If yes, give a LOOP program that computes (μf) (in such a program you may freely use the addition function, the greater-equal predicate, and the conditional statement, all of which are clearly LOOP-computable).
6. (10P) Is the following statement true or not?

$$
\sqrt{3 n^{2}+5}=O(n)
$$

Justify your answer by a proof (possibly by contradiction) using the definition of O.
7. (15P) Take the Java function

```
static int f(int a, int b) {
    if (a+1 >= b) return 1;
    int s = 1;
    s = s+f(a,(a+b)/2);
    s = s+f((a+b)/2,b);
    return s;
}
```

Let $T(n)$ denote the total number of calls of f in the execution of $f(a, b)$ where $n=b-a$; you may assume $n=2^{m}$ for some $m \in \mathbb{N}$.
a) (3P) Sketch the recursion tree for the execution of $f(0,16)$ and compute $T(16)$.
b) (3P) Give a definition of $T(n)$ as a recurrence (do not forget the base case).
c) (3P) Give an explicit solution of $T(n)$ by a sum of the nodes in each tree level.
d) (3P) Give an explicit solution of $T(n)$ by a closed formula.
e) (3P) Give an asymptotic estimation $T(n)=\Theta(\ldots)$.
8. (10P) Are the following statements true or not? Justify your answers.
a) (5P) If a nondeterministic Turing-machine can decide in polynomial time whether an arbitrary propositional formula is satisfiable, then $\mathcal{P}=\mathcal{N} \mathcal{P}$.
b) (5P) If $\mathcal{P}=\mathcal{N} \mathcal{P}$, then every problem that can be decided by a deterministic Turing machine in exponential time can also be decided by a deterministic Turing machine in polynomial time.

