Automated Proofs in Frama-C

Michael Wipplinger

February 3, 2020

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

Revision

Weakest Preconditions

Hoare-Calculus Weakest Precondition Calculus Proofs

The WP-Plugin

Memory Models Arithmetic Models Simplifications

The "Backend"

SMT Solvers Proof Assistants Axioms, Lemmas and Predicates

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Auto-Active Verification

Revision

- ACSL code is written in comments of the form /*@ ... */ or //@ ...
- We can define predicates, logic functions, lemmas and axioms

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

We can use those to define function contracts, that specify properties of the function which can later be verified.

Hoare-Triples

Consider a simple function contract:

```
/*@
requires valid(a) && valid(b);
ensures *a == \old(*b) && *b == \old(*a);
*/
void swap(int* a, int* b)
{
    int b_save = *b;
    *b = *a;
    *a = b_save;
}
```

Where we have a pre and a post condition as well as statements to be executed.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Hoare-Triples

We can break this (and every other) contract down to assertions before and after the statements:

```
int swap(int* a, int* b)
{
   \\@ assert valid(a) && valid(b);
int b_save = *b;
*b = *a;
*a = b_save;
   \\@ assert *a == \old(*b) && *b == \old(*a);
}
```

This denotes a so called **Hoare-Triple** {P} stmt {Q} "if P holds, than after running stmt, Q holds" $\rightarrow A$, $A \rightarrow A$, $A \rightarrow A$, $A \rightarrow A$

Weakest Precondition Calculus

The goal of weakest precondition calculus is to find a condition p = wp(stmt, Q) that $\{p\} stmt \{Q\}$ holds, and that $P \implies p$ for all P that are a sufficient precondition.

We will take a look at the rules used to derive this precondition for an imperative language without pointers and loops.

A D N A 目 N A E N A E N A B N A C N

Weakest Precondition Calculus Rules

Special statements:

- {Q} skip {Q} (skip command does not do anything)
- {P}abort{Q} is true for all P and Q
- Scalar Assignments: {Q[e/x]}x := e{Q} (Q[e/x] the predicate where all free occurrences of x in the definition of Q are replaced by e)

- Sequence Rule: $\frac{\exists R_1, R_2: \{P\}c_1\{R_1\}, R_1 \Longrightarrow R_2, \{R_2\}c_2\{Q\}}{\{P\}c_1; c_2\{Q\}}$
- ► Conditional: $\frac{\{P \land b\} c_1 \{Q\}, \{P \land \neg b\} c_2 \{Q\}}{\{P\} \text{ if } b \text{ then } c_1 \text{ else } c_2 \{Q\}}$
- ► Loop Rule: $\frac{\exists I: P \Longrightarrow I, \{I \land b\} c \{I\}, (I \land \neg b) \Longrightarrow Q}{\{P\} \text{ while } b \text{ do } c \{Q\}}$

Proofs

A rough sketch of how a proof is performed:

- Source code is imported into Frama-C (Basic simplification and minor rewrites)
- The WP-Plugin included in Frama-C breaks down function contracts to Hoare-Triples.
- The WP-Plugin computes the weakest precondition for all Hoare-Triples
- For every Hoare-Triple the weakest precondition and the given precondition are passed on to an external prover to show that the given precondition implies the weakest precondition.

Hoare Memory Model

- Does not feature pointers in any way!
- Each variable is represented by (several) logic variables that are passed to the external prover.
- e.g. a variable x will be translated to x₀ at the beginning of the function, x₁ after the first command and so on ...

The Hoare-Model **is** implemented in Frama-C, but it will complain if there are pointers being dereferenced in the program, meaning it is not suited for most programs.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Pointer Memory Models

There are many ways to model the bit-stream that is the accessing and writing values in the heap. A common structure is as follows:

- Pointer Types: P, a tuple of an address and the size of the object stored there
- Heap Variables: the values $m_1, m_2, \ldots m_k = \bar{m}$ stored in the heap.
- **Read Operation**: $read_T(\bar{m}, p) \mapsto term$
- ▶ Write Relation: $write_T(\bar{m}, p, v, \bar{m}')$ is true iff writing value v in address p of \bar{m} results in \bar{m}'

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Pointer Memory Models

Consider the statement (*p)++;. In the formal model this would mean:

•
$$A_p = read_{int*}(\bar{m}, P)$$
, $(P = adressofp)$

$$\blacktriangleright V_p = read_{int}(\bar{m}, A_p)$$

• write_{int}
$$(\bar{m}, A_p, V_p + 1, \bar{m}')$$

You can see that variables of every type (including pointers) are stored in the heap variable. So any C-variable will just be identified as an address, the value is stored in the heap variable \bar{m} .

Hoare-Variables mixed with Pointers

- Variables whose addresses are not used (most pointers) are Hoare-Variables
- Values that are accessed via pointer use a pointer memory model as discussed before

Very efficient in practice, standard model for WP in Frama-C Our example from before (*p)++; would look like this:

$$\blacktriangleright$$
 $V_p = read_{int}(\bar{m}, P)$

• write_{int} $(\bar{m}, P, V_p + 1, \bar{m}')$

Where P is a Hoare-Variable, the address stored in p.

Other Models

- Typed Model (separate m
 's for each data type, formerly the standard model)
- Caveat Model (typed model with some tweaks to be more efficient, not so safe however)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

 Bytes Model (one to one simulation of heap. Not implemented!)

Integer Models

- Machine Integer Model: Overflowing is allowed by default, but can be disabled. If overflowing is allowed, the addition is interpreted as the mathematical operation on unbound integers and a appropriate modulo (depends on long/short and signed/unsigned).
- Natural Integers: unbounded mathematical integers as we know them. Translation to Machine Integers works by modulo again.

Reals / Float Models

- Float Model: based upon IEEE 754 specifications for floating-point numbers. However it provides little support for proving properties with automated provers.
- Reals: floating-point operations are "transformed" on reals, with no rounding. This is completely unsound with respect to C and IEEE semantics. Properties proved with this model can not be recovered for floating-point numbers.

Simplification

The following simplifications are (by default) performed by the Frama-C WP-Plugin:

- Logic: Formulae are normalized by commutativity, associativity, absorption and neutral elements. The Qed engine also provides some simplifications from sequent calculus.
- Arithmetic: Terms and (in)equalities are simplified by commutativity, associativity, absorption and neutral elements and even linear factorization.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Arrays: elimination of consecutive accesses/updates

SMT Solvers

- SMT stands for Satisfiability modulo Theories and is a decision problem (true/false)
- A theory is a set of first order logic formulae
- Most are based on Boolean-SAT solvers
- Most SMT-Solvers come with implemented theories such as:

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- empty theory
- linear/non-linear integer arithmetic
- floating point arithmetic
- theories regarding data types and arrays

Available in Frama-C:

- Alt-Ergo (standard)
- Beagle
- CVC3 / CVC4

Proof Assistants

- Also called interactive provers
- They do not generate a proof automatically but mechanically check whether a given proof is correct

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

They also rely upon libraries with predefined theories

Available in Frama-C:

- Coq
- Isabelle/HOL
- PVS

Axioms, Lemmas and Predicates

The axioms, lemmas and predicates we defined essentially work as an expansion of the theories the provers already know.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- Since the automatic (SMT) solvers are not complete, one might need to help out, providing lemmas
- To verify the lemmas we can use the interactive provers

The Problem with Total Verification

- Even though SMT-Solvers became much more powerful over the last years, they still require help in form of lemmas, even for "easy" proofs.
- Often one even has to implement several (slightly different) instances of the same lemma..
- The result is, that the verification engineer is forced to work with both the in-code specifications and external proof assistants - two complex systems using a different language.

The Auto-Active Approach

- Originally auto-active verification describes an approach where the user input is supplied before the generation of the verification conditions.
- This can be achieved using ghost code, so called "lemma-functions" and other features of ACSL.

Figure: A 2019 study by Blanchard et al. that focused on auto-active verification led to the following results:

	Lemmas, incl. lemma functions & lemma macros	Generated goals	Goals proved with Coq	Lines of code		Execution time
				Lemmas, incl. l.fun./macros	Guiding annotations	
Case study ((1). The memory management mo	dule MEMB (70	lines of C code)			
Classic	15	134	15	33	20	47 s
Auto-active	3	217	1	25	25	19 s
Case study ((2). The linked list module (176 lin	nes of C code)				
Classic	24	805	19	163	708	24 min
Auto-active	17	1631	1	366	629	21 min
Case study ((3). ACSL by Example, v. 17.2.0 (6	30 lines of C co	de)			
Classic	87	1398	40	594	485	92 min
Auto-active	53	1790	0	670	611	78 min

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへ⊙

Sources

- Frama-C WP models: Frama-C WP Manual
- Weakest Precondition/Hoare Calculus: Hoare Calculus and Predicate Transformers
- SMT-Solvers: Wikipedia
- Auto-Active Verification: Lemma Functions for Frama-C:C Programs as Proofs
- Auto-Active Verification: Towards Full Proof Automation in Frama-C

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00