
Automated Proofs in Frama-C

Automated Proofs in Frama-C

Michael Wipplinger

February 3, 2020



Automated Proofs in Frama-C

Revision

Weakest Preconditions
Hoare-Calculus
Weakest Precondition Calculus
Proofs

The WP-Plugin
Memory Models
Arithmetic Models
Simplifications

The ”Backend”
SMT Solvers
Proof Assistants
Axioms, Lemmas and Predicates

Auto-Active Verification



Automated Proofs in Frama-C

Revision

Revision

I ACSL code is written in comments of the form /*@ ... */ or
//@ ...

I We can define predicates, logic functions, lemmas and axioms

I We can use those to define function contracts, that specify
properties of the function which can later be verified.



Automated Proofs in Frama-C

Weakest Preconditions

Hoare-Calculus

Hoare-Triples

Consider a simple function contract:

/*@

requires valid(a) && valid(b);

ensures *a == \old(*b) && *b == \old(*a);

*/

void swap(int* a, int* b)

{

int b_save = *b;

*b = *a;

*a = b_save;

}

Where we have a pre and a post condition as well as statements to
be executed.



Automated Proofs in Frama-C

Weakest Preconditions

Hoare-Calculus

Hoare-Triples
We can break this (and every other) contract down to assertions
before and after the statements:

int swap(int* a, int* b)

{

\\@ assert valid(a) && valid(b);

int b_save = *b;

*b = *a;

*a = b_save;

\\@ assert *a == \old(*b) && *b == \old(*a);

}

This denotes a so called Hoare-Triple {P} stmt {Q}

”if P holds, than after running stmt, Q holds”



Automated Proofs in Frama-C

Weakest Preconditions

Weakest Precondition Calculus

Weakest Precondition Calculus

The goal of weakest precondition calculus is to find a condition
p = wp(stmt,Q) that {p} stmt {Q} holds, and that P =⇒ p for
all P that are a sufficient precondition.

We will take a look at the rules used to derive this precondition for
an imperative language without pointers and loops.



Automated Proofs in Frama-C

Weakest Preconditions

Weakest Precondition Calculus

Weakest Precondition Calculus Rules

I Special statements:
I {Q} skip {Q} (skip command does not do anything)
I {P}abort{Q} is true for all P and Q

I Scalar Assignments: {Q[e/x ]}x := e{Q}
(Q[e/x ] the predicate where all free occurrences of x in the
definition of Q are replaced by e)

I Sequence Rule: ∃R1,R2: {P}c1{R1}, R1 =⇒ R2, {R2}c2{Q}
{P}c1;c2{Q}

I Conditional: {P∧b} c1 {Q}, {P∧¬b} c2 {Q}
{P} if b then c1 else c2 {Q}

I Loop Rule: ∃I : P =⇒ I , {I∧b} c {I}, (I∧¬b) =⇒ Q
{P} while b do c {Q}



Automated Proofs in Frama-C

Weakest Preconditions

Proofs

Proofs

A rough sketch of how a proof is performed:

I Source code is imported into Frama-C (Basic simplification
and minor rewrites)

I The WP-Plugin included in Frama-C breaks down function
contracts to Hoare-Triples.

I The WP-Plugin computes the weakest precondition for all
Hoare-Triples

I For every Hoare-Triple the weakest precondition and the given
precondition are passed on to an external prover to show that
the given precondition implies the weakest precondition.



Automated Proofs in Frama-C

The WP-Plugin

Memory Models

Hoare Memory Model

I Does not feature pointers in any way!

I Each variable is represented by (several) logic variables that
are passed to the external prover.

I e.g. a variable x will be translated to x0 at the beginning of
the function, x1 after the first command and so on ...

The Hoare-Model is implemented in Frama-C, but it will complain
if there are pointers being dereferenced in the program, meaning it
is not suited for most programs.



Automated Proofs in Frama-C

The WP-Plugin

Memory Models

Pointer Memory Models

There are many ways to model the bit-stream that is the accessing
and writing values in the heap. A common structure is as follows:

I Pointer Types: P, a tuple of an address and the size of the
object stored there

I Heap Variables: the values m1,m2, . . .mk = m̄ stored in the
heap.

I Read Operation: readT (m̄, p) 7→ term

I Write Relation: writeT (m̄, p, v , m̄′) is true iff writing value v
in address p of m̄ results in m̄′



Automated Proofs in Frama-C

The WP-Plugin

Memory Models

Pointer Memory Models

Consider the statement (*p)++;. In the formal model this would
mean:

I Ap = readint∗(m̄,P), (P = adressofp)

I Vp = readint(m̄,Ap)

I writeint(m̄,Ap,Vp + 1, m̄′)

You can see that variables of every type (including pointers) are
stored in the heap variable. So any C-variable will just be identified
as an address, the value is stored in the heap variable m̄.



Automated Proofs in Frama-C

The WP-Plugin

Memory Models

Hoare-Variables mixed with Pointers

I Variables whose addresses are not used (most pointers) are
Hoare-Variables

I Values that are accessed via pointer use a pointer memory
model as discussed before

I Very efficient in practice, standard model for WP in Frama-C

Our example from before (*p)++; would look like this:

I Vp = readint(m̄,P)

I writeint(m̄,P,Vp + 1, m̄′)

Where P is a Hoare-Variable, the address stored in p.



Automated Proofs in Frama-C

The WP-Plugin

Memory Models

Other Models

I Typed Model (separate m̄’s for each data type, formerly the
standard model)

I Caveat Model (typed model with some tweaks to be more
efficient, not so safe however)

I Bytes Model (one to one simulation of heap. Not
implemented!)



Automated Proofs in Frama-C

The WP-Plugin

Arithmetic Models

Integer Models

I Machine Integer Model: Overflowing is allowed by default,
but can be disabled. If overflowing is allowed, the addition is
interpreted as the mathematical operation on unbound
integers and a appropiate modulo (depends on long/short and
signed/unsigned).

I Natural Integers: unbounded mathematical integers as we
know them. Translation to Machine Integers works by modulo
again.



Automated Proofs in Frama-C

The WP-Plugin

Arithmetic Models

Reals / Float Models

I Float Model: based upon IEEE 754 specifications for
floating-point numbers. However it provides little support for
proving properties with automated provers.

I Reals: floating-point operations are ”transformed” on reals,
with no rounding. This is completely unsound with respect to
C and IEEE semantics. Properties proved with this model can
not be recovered for floating-point numbers.



Automated Proofs in Frama-C

The WP-Plugin

Simplifications

Simplification

The following simplifications are (by default) performed by the
Frama-C WP-Plugin:

I Logic: Formulae are normalized by commutativity,
associativity, absorption and neutral elements. The Qed
engine also provides some simplifications from sequent
calculus.

I Arithmetic: Terms and (in)equalities are simplified by
commutativity, associativity, absorption and neutral elements
and even linear factorization.

I Arrays: elimination of consecutive accesses/updates



Automated Proofs in Frama-C

The ”Backend”

SMT Solvers

SMT Solvers

I SMT stands for Satisfiability modulo Theories and is a
decision problem (true/false)

I A theory is a set of first order logic formulae

I Most are based on Boolean-SAT solvers
I Most SMT-Solvers come with implemented theories such as:

I empty theory
I linear/non-linear integer arithmetic
I floating point arithmetic
I theories regarding data types and arrays

Available in Frama-C:

I Alt-Ergo (standard)

I Beagle

I CVC3 / CVC4



Automated Proofs in Frama-C

The ”Backend”

Proof Assistants

Proof Assistants

I Also called interactive provers

I They do not generate a proof automatically but mechanically
check whether a given proof is correct

I They also rely upon libraries with predefined theories

Available in Frama-C:

I Coq

I Isabelle/HOL

I PVS



Automated Proofs in Frama-C

The ”Backend”

Axioms, Lemmas and Predicates

Axioms, Lemmas and Predicates

I The axioms, lemmas and predicates we defined essentially
work as an expansion of the theories the provers already know.

I Since the automatic (SMT) solvers are not complete, one
might need to help out, providing lemmas

I To verify the lemmas we can use the interactive provers



Automated Proofs in Frama-C

Auto-Active Verification

The Problem with Total Verification

I Even though SMT-Solvers became much more powerful over
the last years, they still require help in form of lemmas, even
for ”easy” proofs.

I Often one even has to implement several (slightly different)
instances of the same lemma..

I The result is, that the verification engineer is forced to work
with both the in-code specifications and external proof
assistants - two complex systems using a different language.



Automated Proofs in Frama-C

Auto-Active Verification

The Auto-Active Approach
I Originally auto-active verification describes an approach where

the user input is supplied before the generation of the
verification conditions.

I This can be achieved using ghost code, so called
”lemma-functions” and other features of ACSL.

Figure: A 2019 study by Blanchard et al. that focused on auto-active
verification led to the following results:



Automated Proofs in Frama-C

Auto-Active Verification

Sources

I Frama-C WP models: Frama-C WP Manual

I Weakest Precondition/Hoare Calculus: Hoare Calculus and
Predicate Transformers

I SMT-Solvers: Wikipedia

I Auto-Active Verification: Lemma Functions for Frama-C:C
Programs as Proofs

I Auto-Active Verification: Towards Full Proof Automation in
Frama-C

https://frama-c.com/download/frama-c-wp-manual.pdf
https://www3.risc.jku.at/education/oldmoodle/file.php/22/slides/02-hoare.pdf
https://www3.risc.jku.at/education/oldmoodle/file.php/22/slides/02-hoare.pdf
https://arxiv.org/pdf/1811.05879.pdf
https://arxiv.org/pdf/1811.05879.pdf
https://allan-blanchard.fr/publis/blk_nfm_2019.pdf
https://allan-blanchard.fr/publis/blk_nfm_2019.pdf

	Revision
	Weakest Preconditions
	Hoare-Calculus
	Weakest Precondition Calculus
	Proofs

	The WP-Plugin
	Memory Models
	Arithmetic Models
	Simplifications

	The "Backend"
	SMT Solvers
	Proof Assistants
	Axioms, Lemmas and Predicates

	Auto-Active Verification

