The Integration of SMT Solvers into the RISCAL Model Checker

Second Master Thesis Report

Franz Reichl January 31, 2020

- Check validity of RISCAL theorems with SMT-Solvers
- Translate RISCAL declarations into SMT-LIB scripts
- Use the SMT-LIB logic QF_UFBV
- Translation requires:
 - Elimination of quantifiers
 - Encoding of RISCAL types

Last time we already discussed

- Elimination of quantifiers
- Translation of integers

Outline

- 1. Translation of the Theories
- 1.1 Translation of Tuples and Record
- 1.2 Translation of Maps and Arrays
- 1.3 Translation of Sets
- 2. Improvements for the Translation
- 3. Results and Conclusions

Translation of the Theories

- Difference between tuples and records: indexing
 - Tuples: Indexed by numbers
 - Records: Indexed by identifiers
- Treat tuples and records equally
- All RISCAL types can be represented by bit vectors

- \cdot Translate components of tuples
- Concatenate bit vector representations of components

Let $\langle 3, \mathbb{T}, 10 \rangle$ denote a tuple *t*.

- Represent 3 by 11
- Represent *true* by 1
- Represent 10 by 1010

Represent t by 1010111

Operations on Tuples

- Tuple Builder: $\langle e_1, \cdots, e_n \rangle$
 - Translate e_1, \cdots, e_n to $\hat{e}_1, \cdots, \hat{e}_n$
 - $concat(\hat{e}_n, concat(\cdots, concat(\hat{e}_2, \hat{e}_1) \cdots)$
- Tuple Access: $Access_i(t)$
 - + Translate t to \hat{t}
 - Determine start/end (s, e) of sub bit vector representing the *i*th component
 - $extract_{\langle e,s \rangle}(\hat{t})$
- Tuple Update: $Update_i(t, e)$
 - Translate t to \hat{t} and e to \hat{e}
 - Determine start/end (s, e) of sub bit vector representing the i^{th} component
 - Extract sub-vectors before s (\hat{t}_1), after e (\hat{t}_2) from \hat{t}
 - $concat(\hat{t}_2, concat(\hat{e}, \hat{t}_1))$

Let e_1, e_2 be expressions of type $\{0, 1, 2, 3, 4\}$. Translate $Access_2(\langle e_1, e_2 \rangle)$

- Translate e_1, e_2 to \hat{e}_1, \hat{e}_2
- Represent the tuple by: $concat(\hat{e}_2, \hat{e}_1)$
- $extract_{(5,3)}(concat(\hat{e}_2,\hat{e}_1))$

Operations on Tuples

- Tuples provide equality and inequality
- Problem: Components can have different types
- Resize Components

- Let t_1 be a tuple expression with two components in $\{0, 1, 2\}$
- Let t_2 be a tuple expression with two components in $\{0, 1\}$
- Let \hat{t}_1, \hat{t}_2 denote the translations of t_1, t_2
- $\cdot \hat{t}_1, \hat{t}_2$ have different vector lengths
- $\cdot \hat{t}_1 = \hat{t}_2$ not possible

- Arrays: Maps with a domain of natural numbers
- $\cdot\,$ Treat arrays as maps
- Proceed similarly as with tuples
- Require a linear ordering on the RISCAL types

- Let M be a map type with domain D and image I
- Let d_1, \cdots, d_n be the elements of D given with respect to the ordering
- Let m be of type M
- Translate $m(d_1), \cdots, m(d_n)$ to m_1, \cdots, m_n
- Concatenate m_1, \cdots, m_n

- Let $D = \{0, 1, 2\}$ and $I = \{0, 1, 2, 3, 4\}$
- Let *m* be a map from *D* to *I* with $m(x) = 2 \cdot x$
- Translate *m*(0), *m*(1), *m*(2) to 000, 010, 100
- Represent *m* by 100010000

Operations on Maps

- Map Access: Access(m, x)
- Translate m, x to \hat{m}, \hat{x}
- Introduce an enumeration function enum for the domain of m
- Introduce a new function f
 - Takes a bit vector of the length of \hat{m}
 - Takes a bit vector of the length of the enumeration
 - $\cdot\,$ Gives a bit vector of the length of the representation of the image
- Assert that $f(m, 0 \cdots 0)$ retrieves the first component
- Assert that $f(m, 0 \cdots 01)$ retrieves the second component

• . . .

• $f(\hat{m}, enum(\hat{x}))$

- \cdot Let U be a finite set, with some enumeration
- \cdot Let A be a subset of U
- Represent A by bit vectors of length |U|
- i^{th} bit is set iff i^{th} element of U is in A

- Let $U = \{1, 2, 3, 4\}$
- Let $A = \{1, 4\}$
- Represent A by 1001

- Use bitwise-or for union
- Use bitwise-and for disjunction
- Use bitwise-negation for set-complement
- $\cdot\,$ Count ones in a bit vector for cardinality

• • • •

- $\{1, 2, 6\} \cup \{1, 5, 6\}$
- Represent $\{1,2,6\}$ by 100011
- Represent $\{1,5,6\}$ by 110001
- *bvor*(100011, 110001)

Basic Operations on Sets

- Problem: Sets with different types (universes)
- Find suitable common super-type

- $\{1,2\} \cup \{5,6\}$
- Represent $\{1,2\}$ by 11
- Represent $\{5,6\}$ by 11
- + *bvor*(11, 11) does not represent $\{1, 2\} \cup \{5, 6\}$
- Represent {1,2} by 000011
- Represent {5,6} by 110000
- *bvor*(000011, 110000)

- Power Sets $\mathcal{P}(S)$
- Let U be the universe of S
- For $x \in U$: setsWith(x) shall denote $\{s \mid s \subseteq U \land x \in s\}$
- + $\mathcal{P}(S) = (\bigcup_{s \in U \setminus S} setsWith(s))^c$

- Let $U = \{0, 1, 2\}$
- Enumeration: \emptyset , {0}, {1}, {0, 1}, {2}, {0, 2}, {1, 2}, {0, 1, 2}
- *setsWith*: 10101010, 11001100, 11110000
- $\mathcal{P}(\{1\})$: bvnot(bvor(10101010, 11110000))
- This is 00000101

Improvements for the Translation

- Cut Declarations
- Auxiliary functions for quantifier expansion
- Limit use of Skolemisation

Auxiliary Functions for Quantifier Expansion

- Quantifier expansion with nested quantifiers can be costly
- Define functions that cover the individual quantifier levels

- Let $Int[a,b] \coloneqq \{x \in \mathbb{Z} \mid a \le x \le b\}$
- $\forall x : Int[0, 4]. \ \forall y : Int[0, 4]. \ x + y < 10$
- Introduce $f: Int[0, 4] \rightarrow Bool$
- Define $f(x) \coloneqq \bigwedge_{y \in I[0,4]} x + y < 10$
- $\bigwedge_{x \in I[0,4]} f(x)$

- Skolem-functions regularly require certain properties
- Assurance of properties involves universal quantifiers
- Expanding original existential quantifier can be more efficient than expanding universal quantifiers from properties.

- $\forall x : Int[1, 10]. \exists y : Int[1, 2]. x y \ge 0$
- Skolemisation: Use $f: I[1, 10] \rightarrow I[1, 2]$
- Bit vector representation of \hat{f} : $BitVec(4) \rightarrow BitVec(2)$
- Have to ensure that $01 \leq_{BV} \hat{f}(0001) \leq_{BV} 10, \ 01 \leq_{BV} \hat{f}(0010) \leq_{BV} 10, \cdots$

Results and Conclusions

- 50 test cases covering all types
- $\cdot\,$ User defined theorems and generated theorems
- Relatively large model parameters
- $\cdot \sim rac{3}{4}$ valid

	RISCAL	Boolector	Z3	Yices	CVC4
Fastest ¹	28%	14%	6%	54%	0%
Fastest valid ¹	18%	16%	8%	60%	0%
Fastest invalid ¹	58%	8%	0%	33%	0%
Faster than RISCAL		54%	52%	72%	42%
Faster than RISCAL valid		63%	61%	82%	47%
Faster than RISCAL invalid		25%	25%	42%	25%

¹Row does not sum up to 100 due to equal timings and rounding

- Results strongly depend on structure of RISCAL specifications
- RISCAL benefits from:
 - valid existentially quantified formulae
 - invalid universally quantified formulae
- \cdot SMT-Solver approach disbenefits from
 - Language constructs that need additional quantifier expansions (recursive functions, choose)

- Support for recursive types
- Use SMT solvers incrementally
- Generation of counterexamples
- Usage of a SMT-LIB logic with quantifiers