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Recapitulation

• Check validity of RISCAL theorems with SMT-Solvers
• Translate RISCAL declarations into SMT-LIB scripts
• Use the SMT-LIB logic QF_UFBV
• Translation requires:

• Elimination of quantifiers
• Encoding of RISCAL types
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Recapitulation

Last time we already discussed

• Elimination of quantifiers
• Translation of integers
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Translation of the Theories



Tuples and Record

• Difference between tuples and records: indexing
• Tuples: Indexed by numbers
• Records: Indexed by identifiers

• Treat tuples and records equally
• All RISCAL types can be represented by bit vectors
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Encoding of Tuples

• Translate components of tuples
• Concatenate bit vector representations of components

Example
Let ⟨3,T, 10⟩ denote a tuple t.

• Represent 3 by 11
• Represent true by 1
• Represent 10 by 1010

Represent t by 1010111
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Operations on Tuples

• Tuple Builder: ⟨e1, · · · , en⟩
• Translate e1, · · · , en to ê1, · · · , ên
• concat(ên, concat(· · · , concat(ê2, ê1) · · · )

• Tuple Access: Accessi(t)
• Translate t to t̂
• Determine start/end (s, e) of sub bit vector representing the ith component
• extract⟨e,s⟩(̂t)

• Tuple Update: Updatei(t, e)
• Translate t to t̂ and e to ê
• Determine start/end (s, e) of sub bit vector representing the ith component
• Extract sub-vectors before s (̂t1), after e (̂t2) from t̂
• concat(̂t2, concat(ê, t̂1))
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Operations on Tuples

Example
Let e1, e2 be expressions of type {0, 1, 2, 3, 4}.
Translate Access2(⟨e1, e2⟩)

• Translate e1, e2 to ê1, ê2
• Represent the tuple by: concat(ê2, ê1)
• extract⟨5,3⟩(concat(ê2, ê1))
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Operations on Tuples

• Tuples provide equality and inequality
• Problem: Components can have different types
• Resize Components

Example
• Let t1 be a tuple expression with two components in {0, 1, 2}
• Let t2 be a tuple expression with two components in {0, 1}
• Let t̂1, t̂2 denote the translations of t1, t2
• t̂1, t̂2 have different vector lengths
• t̂1 = t̂2 not possible
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Maps and Arrays

• Arrays: Maps with a domain of natural numbers
• Treat arrays as maps
• Proceed similarly as with tuples
• Require a linear ordering on the RISCAL types
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Encoding of Maps

• Let M be a map type with domain D and image I
• Let d1, · · · ,dn be the elements of D given with respect to the ordering
• Let m be of type M
• Translate m(d1), · · · ,m(dn) to m1, · · · ,mn

• Concatenate m1, · · · ,mn
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Encoding of Maps

Example
• Let D = {0, 1, 2} and I = {0, 1, 2, 3, 4}
• Let m be a map from D to I with m(x) = 2 · x
• Translate m(0),m(1),m(2) to 000, 010, 100
• Represent m by 100010000
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Operations on Maps

• Map Access: Access(m, x)
• Translate m, x to m̂, x̂
• Introduce an enumeration function enum for the domain of m
• Introduce a new function f

• Takes a bit vector of the length of m̂
• Takes a bit vector of the length of the enumeration
• Gives a bit vector of the length of the representation of the image

• Assert that f(m, 0 · · · 0) retrieves the first component
• Assert that f(m, 0 · · · 01) retrieves the second component
• · · ·
• f(m̂, enum(x̂))
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Sets

• Let U be a finite set, with some enumeration
• Let A be a subset of U
• Represent A by bit vectors of length |U|
• ith bit is set iff ith element of U is in A
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Sets

Example
• Let U = {1, 2, 3, 4}
• Let A = {1, 4}
• Represent A by 1001
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Operations on Sets

• Use bitwise-or for union
• Use bitwise-and for disjunction
• Use bitwise-negation for set-complement
• Count ones in a bit vector for cardinality
• · · ·
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Basic Operations on Sets

Example
• {1, 2, 6} ∪ {1, 5, 6}
• Represent {1, 2, 6} by 100011
• Represent {1, 5, 6} by 110001
• bvor(100011, 110001)
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Basic Operations on Sets

• Problem: Sets with different types (universes)
• Find suitable common super-type

Example
• {1, 2} ∪ {5, 6}
• Represent {1, 2} by 11
• Represent {5, 6} by 11
• bvor(11, 11) does not represent {1, 2} ∪ {5, 6}
• Represent {1, 2} by 000011
• Represent {5, 6} by 110000
• bvor(000011, 110000)
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Advanced Operations on Sets

• Power Sets P(S)
• Let U be the universe of S
• For x ∈ U: setsWith(x) shall denote {s | s ⊆ U ∧ x ∈ s}
• P(S) = (

∪
s∈U\S setsWith(s))c
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Advanced Operations on Sets

Example
• Let U = {0, 1, 2}
• Enumeration: ∅, {0}, {1}, {0, 1}, {2}, {0, 2}, {1, 2}, {0, 1, 2}
• setsWith: 10101010, 11001100, 11110000
• P({1}) : bvnot(bvor(10101010, 11110000))
• This is 00000101
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Improvements for the Translation



Improvements for the Translation

• Cut Declarations
• Auxiliary functions for quantifier expansion
• Limit use of Skolemisation
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Auxiliary Functions for Quantifier Expansion

• Quantifier expansion with nested quantifiers can be costly
• Define functions that cover the individual quantifier levels

Example
• Let Int[a,b] := {x ∈ Z | a ≤ x ≤ b}
• ∀x : Int[0, 4]. ∀y : Int[0, 4]. x+ y < 10
• Introduce f : Int[0, 4] → Bool
• Define f(x) :=

∧
y∈I[0,4] x+ y < 10

•
∧
x∈I[0,4] f(x)
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Limiting Skolemisation

• Skolem-functions regularly require certain properties
• Assurance of properties involves universal quantifiers
• Expanding original existential quantifier can be more efficient than
expanding universal quantifiers from properties.

Example
• ∀x : Int[1, 10]. ∃y : Int[1, 2]. x− y ≥ 0
• Skolemisation: Use f : I[1, 10] → I[1, 2]
• Bit vector representation of f̂ : BitVec(4) → BitVec(2)
• Have to ensure that 01 ≤BV f̂(0001) ≤BV 10, 01 ≤BV f̂(0010) ≤BV 10, · · ·
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Results and Conclusions



Results

• 50 test cases covering all types
• User defined theorems and generated theorems
• Relatively large model parameters
• ∼ 3

4 valid
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Results

RISCAL Boolector Z3 Yices CVC4
Fastest1 28% 14% 6% 54% 0%

Fastest valid1 18% 16% 8% 60% 0%
Fastest invalid1 58% 8% 0% 33% 0%

Faster than RISCAL 54% 52% 72% 42%
Faster than RISCAL valid 63% 61% 82% 47%
Faster than RISCAL invalid 25% 25% 42% 25%

1Row does not sum up to 100 due to equal timings and rounding
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Results

• Results strongly depend on structure of RISCAL specifications
• RISCAL benefits from:

• valid existentially quantified formulae
• invalid universally quantified formulae

• SMT-Solver approach disbenefits from
• Language constructs that need additional quantifier expansions (recursive
functions, choose)
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Future Work

• Support for recursive types
• Use SMT solvers incrementally
• Generation of counterexamples
• Usage of a SMT-LIB logic with quantifiers
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