
The Integration of SMT Solvers into the
RISCAL Model Checker
Second Master Thesis Report

Franz Reichl
January 31, 2020

1

Recapitulation

• Check validity of RISCAL theorems with SMT-Solvers
• Translate RISCAL declarations into SMT-LIB scripts
• Use the SMT-LIB logic QF_UFBV
• Translation requires:

• Elimination of quantifiers
• Encoding of RISCAL types

2

Recapitulation

Last time we already discussed

• Elimination of quantifiers
• Translation of integers

3

Outline

1. Translation of the Theories

1.1 Translation of Tuples and Record

1.2 Translation of Maps and Arrays

1.3 Translation of Sets

2. Improvements for the Translation

3. Results and Conclusions

4

Translation of the Theories

Tuples and Record

• Difference between tuples and records: indexing
• Tuples: Indexed by numbers
• Records: Indexed by identifiers

• Treat tuples and records equally
• All RISCAL types can be represented by bit vectors

5

Encoding of Tuples

• Translate components of tuples
• Concatenate bit vector representations of components

Example
Let ⟨3,T, 10⟩ denote a tuple t.

• Represent 3 by 11
• Represent true by 1
• Represent 10 by 1010

Represent t by 1010111

6

Operations on Tuples

• Tuple Builder: ⟨e1, · · · , en⟩
• Translate e1, · · · , en to ê1, · · · , ên
• concat(ên, concat(· · · , concat(ê2, ê1) · · ·)

• Tuple Access: Accessi(t)
• Translate t to t̂
• Determine start/end (s, e) of sub bit vector representing the ith component
• extract⟨e,s⟩(̂t)

• Tuple Update: Updatei(t, e)
• Translate t to t̂ and e to ê
• Determine start/end (s, e) of sub bit vector representing the ith component
• Extract sub-vectors before s (̂t1), after e (̂t2) from t̂
• concat(̂t2, concat(ê, t̂1))

7

Operations on Tuples

Example
Let e1, e2 be expressions of type {0, 1, 2, 3, 4}.
Translate Access2(⟨e1, e2⟩)

• Translate e1, e2 to ê1, ê2
• Represent the tuple by: concat(ê2, ê1)
• extract⟨5,3⟩(concat(ê2, ê1))

8

Operations on Tuples

• Tuples provide equality and inequality
• Problem: Components can have different types
• Resize Components

Example
• Let t1 be a tuple expression with two components in {0, 1, 2}
• Let t2 be a tuple expression with two components in {0, 1}
• Let t̂1, t̂2 denote the translations of t1, t2
• t̂1, t̂2 have different vector lengths
• t̂1 = t̂2 not possible

9

Maps and Arrays

• Arrays: Maps with a domain of natural numbers
• Treat arrays as maps
• Proceed similarly as with tuples
• Require a linear ordering on the RISCAL types

10

Encoding of Maps

• Let M be a map type with domain D and image I
• Let d1, · · · ,dn be the elements of D given with respect to the ordering
• Let m be of type M
• Translate m(d1), · · · ,m(dn) to m1, · · · ,mn

• Concatenate m1, · · · ,mn

11

Encoding of Maps

Example
• Let D = {0, 1, 2} and I = {0, 1, 2, 3, 4}
• Let m be a map from D to I with m(x) = 2 · x
• Translate m(0),m(1),m(2) to 000, 010, 100
• Represent m by 100010000

12

Operations on Maps

• Map Access: Access(m, x)
• Translate m, x to m̂, x̂
• Introduce an enumeration function enum for the domain of m
• Introduce a new function f

• Takes a bit vector of the length of m̂
• Takes a bit vector of the length of the enumeration
• Gives a bit vector of the length of the representation of the image

• Assert that f(m, 0 · · · 0) retrieves the first component
• Assert that f(m, 0 · · · 01) retrieves the second component
• · · ·
• f(m̂, enum(x̂))

13

Sets

• Let U be a finite set, with some enumeration
• Let A be a subset of U
• Represent A by bit vectors of length |U|
• ith bit is set iff ith element of U is in A

14

Sets

Example
• Let U = {1, 2, 3, 4}
• Let A = {1, 4}
• Represent A by 1001

15

Operations on Sets

• Use bitwise-or for union
• Use bitwise-and for disjunction
• Use bitwise-negation for set-complement
• Count ones in a bit vector for cardinality
• · · ·

16

Basic Operations on Sets

Example
• {1, 2, 6} ∪ {1, 5, 6}
• Represent {1, 2, 6} by 100011
• Represent {1, 5, 6} by 110001
• bvor(100011, 110001)

17

Basic Operations on Sets

• Problem: Sets with different types (universes)
• Find suitable common super-type

Example
• {1, 2} ∪ {5, 6}
• Represent {1, 2} by 11
• Represent {5, 6} by 11
• bvor(11, 11) does not represent {1, 2} ∪ {5, 6}
• Represent {1, 2} by 000011
• Represent {5, 6} by 110000
• bvor(000011, 110000)

18

Advanced Operations on Sets

• Power Sets P(S)
• Let U be the universe of S
• For x ∈ U: setsWith(x) shall denote {s | s ⊆ U ∧ x ∈ s}
• P(S) = (

∪
s∈U\S setsWith(s))c

19

Advanced Operations on Sets

Example
• Let U = {0, 1, 2}
• Enumeration: ∅, {0}, {1}, {0, 1}, {2}, {0, 2}, {1, 2}, {0, 1, 2}
• setsWith: 10101010, 11001100, 11110000
• P({1}) : bvnot(bvor(10101010, 11110000))
• This is 00000101

20

Improvements for the Translation

Improvements for the Translation

• Cut Declarations
• Auxiliary functions for quantifier expansion
• Limit use of Skolemisation

21

Auxiliary Functions for Quantifier Expansion

• Quantifier expansion with nested quantifiers can be costly
• Define functions that cover the individual quantifier levels

Example
• Let Int[a,b] := {x ∈ Z | a ≤ x ≤ b}
• ∀x : Int[0, 4]. ∀y : Int[0, 4]. x+ y < 10
• Introduce f : Int[0, 4] → Bool
• Define f(x) :=

∧
y∈I[0,4] x+ y < 10

•
∧
x∈I[0,4] f(x)

22

Limiting Skolemisation

• Skolem-functions regularly require certain properties
• Assurance of properties involves universal quantifiers
• Expanding original existential quantifier can be more efficient than
expanding universal quantifiers from properties.

Example
• ∀x : Int[1, 10]. ∃y : Int[1, 2]. x− y ≥ 0
• Skolemisation: Use f : I[1, 10] → I[1, 2]
• Bit vector representation of f̂ : BitVec(4) → BitVec(2)
• Have to ensure that 01 ≤BV f̂(0001) ≤BV 10, 01 ≤BV f̂(0010) ≤BV 10, · · ·

23

Results and Conclusions

Results

• 50 test cases covering all types
• User defined theorems and generated theorems
• Relatively large model parameters
• ∼ 3

4 valid

24

Results

RISCAL Boolector Z3 Yices CVC4
Fastest1 28% 14% 6% 54% 0%

Fastest valid1 18% 16% 8% 60% 0%
Fastest invalid1 58% 8% 0% 33% 0%

Faster than RISCAL 54% 52% 72% 42%
Faster than RISCAL valid 63% 61% 82% 47%
Faster than RISCAL invalid 25% 25% 42% 25%

1Row does not sum up to 100 due to equal timings and rounding

25

Results

• Results strongly depend on structure of RISCAL specifications
• RISCAL benefits from:

• valid existentially quantified formulae
• invalid universally quantified formulae

• SMT-Solver approach disbenefits from
• Language constructs that need additional quantifier expansions (recursive
functions, choose)

26

Future Work

• Support for recursive types
• Use SMT solvers incrementally
• Generation of counterexamples
• Usage of a SMT-LIB logic with quantifiers

27

	Translation of the Theories
	Translation of Tuples and Record
	Translation of Maps and Arrays
	Translation of Sets

	Improvements for the Translation
	Results and Conclusions

