PERFORMANCE ANALYSIS

Course "Parallel Computing"

Wolfgang Schreiner

Research Institute for Symbolic Computation (RISC) Wolfgang.Schreiner@risc.jku.at http://www.risc.jku.at

Evaluating Parallel Programs

We achieved a speedup of 10.8 on p = 12 processors with problem size n = 100. 1000 Perfect Speedu Algorithm 1 Algorithm 2 Algorithm 3 100 Multiple programs may speedup satisfy this observation: 10 Program 1: $T = n + n^2/p$. 10 100 1000 Processors Program 2: N=1000 10000 $T = (n + n^2)/p + 100$ Perfect Speedup Algorithm I Algorithm 2 1000 Algorithm 3 Program 3: peedup $T = (n + n^2)/p + 0.6p^2$ 100 10 10 100 1000 10000 Processors Figure 3.1. Ian Foster: DBPP

We have to evaluate programs on varying parameters.

Speedup and Efficiency

• (Absolute) speedup S_p and efficiency E_p :

$$S_p = \frac{T}{T_p} \qquad \qquad E_p = \frac{S_p}{p} = \frac{T}{p \cdot T_p}$$

 \Box T: execution time of sequential program.

 \Box T_p : execution time of parallel program with p processors.

Relative speedup \overline{S}_p and efficiency \overline{E}_p :

$$\overline{S}_p = \frac{T_1}{T_p}$$
 $\overline{E}_p = \frac{\overline{S}_p}{p} = \frac{T_1}{p \cdot T_p}$

□ Use for comparison the parallel program with 1 processor.

□ Measures "scalability" rather than "performance".

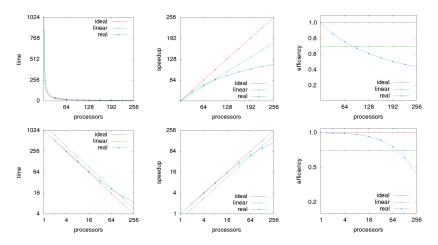
Typical ranges: $S_p \leq \overline{S}_p \leq p$ and $E_p \leq \overline{E}_p \leq 1$.

 \Box If $S_p > p$, we have a "superlinear speedup".

$$\Box$$
 If $S_p > \overline{S_p}$, then $T > T_1$.

Speedup denotes the "performance" of parallelism, efficiency relates this performance to the invested "costs". 2/14

Diagrams



Logarithmic scales may yield additional insights.

Superlinear Speedups

Can the speedup be larger than the number of processors?

- Simple theoretical argument: "no".
 - □ We can simulate the execution of a parallel program with p processors on a single processor in time $p \cdot T_p$. Thus $T \leq p \cdot T_p$ and $S_p = T/T_p \leq p$.
- However, practical observation: "yes".
 - □ Cache effects: a system with *p* processors has typically also *p* times as much cache which yields more cache hits.
 - Search anomalies: if the computation involves a "search", one processor may be lucky to find the result early.
- These advantages can be "practically" not achieved on a single processor system.

However, often super-linear speedups indicate program errors.

Amdahl's Law

Assume that a workload contains a sequential fraction f.

Amdahl's law: S_p ≤ 1/(f+1-f) ≤ 1/f
 □ Speedup has an upper limit determined by f.

Amdahl's Law 20.00 18.00 Parallel portion 16.00 14.00 95% sequential f12.00 fraction peedup 10.00 8.00 1 - fparallelizable fraction 6.00 4.00 2.00 0.00 -2 ė 28 26 i i 024 192 384 2768 5536

Number of processors

Amdahl's law, en.wikipedia.org

Speedup is limited by the sequential fraction of a workload.

Gustafson's Law

Assume workload can be scaled as much as time permits.

Amdahl: $S_p \leq \frac{1}{f + \frac{1-f}{f}}$ \Box Fixed work load $T = f \cdot T + (1 - f) \cdot T$ $\Box S_p \le \frac{T}{f \cdot T + \frac{(1-f) \cdot T}{T}} = \frac{1}{f + \frac{1-f}{T}}$ Gustafson: $S_p \leq f + p \cdot (1 - f)$ \Box Scalable work load $T_p = f \cdot T + p \cdot (1 - f) \cdot T$ $\Box \ S_p \leq \frac{f \cdot T + p \cdot (1 - f) \cdot T}{f \cdot T + \frac{p \cdot (1 - f) \cdot T}{T}} = \frac{f \cdot T + p \cdot (1 - f) \cdot T}{T} = f + p \cdot (1 - f)$ Gustafson's Law: S(P) = P-a*(P-1) If the parallelizable 100 workload grows linearly with the numer of 60 processors, the speedup grows correspondingly such that the efficiency

120

6/14

Number of Processors

Gustafson's law, en.wikipedia.org

remains constant.

Scalability Analysis

We have to scale the workload to keep the efficiency constant.

Assume $T_{p,n} = \frac{T_n + P_{p,n}}{n}$. \Box $T_{p.n}$: the parallel time with p processors for problem size n. \Box T_n : the basic work performed by the sequential program. \square $P_{p,n}$: the extra work performed by the parallel program. • Then $E_{p,n} = \frac{T_n}{p \cdot T_n \cdot n} = \frac{T_n}{T_n + P_n \cdot n}$. \Box $E_{p,n}$: the efficiency with p processors for problem size n. \Box Thus $T_n = \frac{E_{p,n}}{1-E} \cdot P_{p,n}$; for achieving constant efficiency E, we have to ensure $T_n = \frac{E}{1-E} \cdot P_{n,n} = K_E \cdot P_{n,n}$. Isoefficiency function: $I_n^E = K_E \cdot P_{p,n}$ $\hfill\square\hfill\ I^E_n$ describes how much the basic work load has to grow for

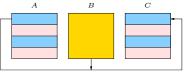
growing processor number p to keep efficiency E.

 \square *n*: problem size such that $T_n = K_E \cdot P_{p,n}$.

The less I_p^E grows, the more scalable the program is.

Example: Matrix Multiplication

Multiplication of two square matrices A, B of dimension n.



Row-oriented parallelization.
A is scattered, *B* is broadcast, *C* is gathered.

$$T_n = n^3 \text{ and } T_{p,n} = \frac{n^3}{p} + 3n^2$$

$$T_{p,n} = \frac{T_n + P_{p,n}}{p}$$

$$P_{p,n} = T_{p,n} \cdot p - T_n = (\frac{n^3}{p} + 3n^2) \cdot p - n^3 = 3pn^2$$

$$T_n = K_E \cdot P_{p,n}$$

$$n^3 = K_E \cdot 3pn^2$$

$$n = K_E \cdot 3p$$

$$I_p^E = K_E \cdot P_{p,n}$$

$$I_p^E = K_E \cdot p_{p,n}$$

$$I_p^E = K_E \cdot 3pn^2 = K_E \cdot 3p \cdot (K_E \cdot 3p)^2 = (K_E)^3 \cdot 27p^3$$

The matrix dimension n must grow with $\Omega(p)$, the basic work load thus grows with $\Omega(p^3)$.

Example: Matrix Multiplication

Often only asymptotic estimations are possible/needed.

$$\begin{array}{l} \blacksquare \quad T_n = \Theta(n^3) \text{ and } P_{p,n} = \Theta(p \log p + n^2 \sqrt{p}) \\ \square \quad \text{Fox-Otto-Hey algorithm on } \sqrt{p} \times \sqrt{p} \text{ torus.} \end{array} \\ \blacksquare \quad T_n = \Omega(P_{p,n}) \\ \square \quad n^3 = \Omega(p \log p + n^2 \sqrt{p}) \\ \square \quad n^3 = \Omega(n^2 \sqrt{p}) \Rightarrow n = \Omega(\sqrt{p}) \\ \square \quad n = \Omega(\sqrt{p}) \Rightarrow n^3 = \Omega(\sqrt{p}^3) = \Omega(p \sqrt{p}) = \Omega(p \log p) \\ \square \quad n^3 = \Omega(n^2 \sqrt{p}) \wedge n^3 = \Omega(p \log p) \Rightarrow n^3 = \Omega(p \log p + n^2 \sqrt{p}) \checkmark \\ \square \quad n = \Omega(\sqrt{p}) \\ \blacksquare \quad I_p^E = \Omega(P_{p,n}) \\ \square \quad I_p^E = \Omega(p \log p + n^2 \sqrt{p}) = \Omega(p \log p + p \sqrt{p}) = \Omega(p \sqrt{p}) \end{aligned}$$

The matrix dimension n must grow with $\Omega(\sqrt{p})$, the basic work load thus grows with $\Omega(p\sqrt{p})$.

Modeling Program Performance

$$T = \frac{1}{p} (T_{\rm comp} + T_{\rm comm} + T_{\rm idle})$$

- T_{comp}: computation time.
 T_{comm}: communication time.
- \blacksquare T_{idle} : idle time.

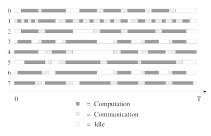


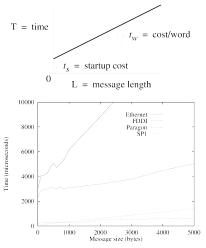
Figure 3.2, Ian Foster: DBPP

The parallel program overhead mainly stems from communicating and idling.

Communication Time

$$T_L = t_s + t_w \cdot L$$

- T_L: the time for sending a message of size L.
- t_s: the fixed message startup time.
- t_w: the transfer time per word of the message.

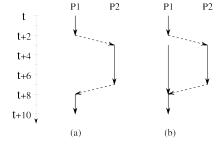


Figures 3.3 and 3.4, Ian Foster: DBPP

Typically $t_s \gg t_w$, thus it is better to send a single big message rather than many small messages.

Idle Time

- Apply load-balancing techniques.
- Overlap computation and communication.
 - Have multiple threads per processor.
 - Let process interleave computation and communication.



Structure the program to minimize idling.

Execution Profiles

Poor performance may have multiple reasons.

- Replicated computation.
- Idle times due to load imbalances.
- Number of messages transmitted.
- Size of messages transmitted.

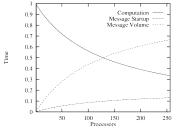


Figure 3.8, Ian Foster: DBPP

Modeling/measuring execution profiles may help to improve the design of a program.

Experimental Studies

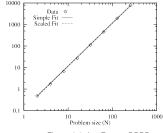
- Design experiment.
 - Identify data to be obtained.
 - Determine parameter ranges.
 - Ensure adequacy of measurements.
- Perform experiment.
 - Repeat runs to verify reproducability.
 - Drop outliers, average the others.
 - Fit observed data o(i) to model m(i):
 - Least square fitting: minimize

$$\sum_{i} (o(i) - m(i))^2$$

Scaled least square fitting: minimize

$$\sum_{i} (\frac{o(i) - m(i)}{o(i)})^2$$

(giving more weight to smaller values).



Otal Time

Figure 3.9, Ian Foster: DBPP