Problems Solved:

46	47	48	49	50

Name:

Matrikel-Nr.:

Problem 46. Consider the following Java methods:

```
int a(int n) { return b(n); }
int b(int n) {
    if (n<1) {return -1;}
    int p = b(n-1);
    int q = b(n-2);
    int r = b(n-2);
    return p+q+r; }
```

Let f_{n} be the number of calls to method b which result from evaluating $\mathrm{a}(n)$ where $n \geq 0$. (We assume that no optimizations are made. In particular, both of the function calls $b(n-2)$ in lines 5 and 6 are executed.)

1. Compute f_{n} for $n=0,1, \ldots, 5$.
2. Give a recurrence relation for f_{n}.
3. Let

$$
F(z)=\sum_{n=0}^{\infty} f_{n} z^{n}=1+z+4 z^{2}+\ldots
$$

be the generating function of the sequence f_{n}. (Assume that this sum converges; for $|z|<1 / 2$ it does.) Show that the generating function $F(z)$ satisfies the equation

$$
\begin{equation*}
F(z)=z F(z)+2 z^{2} F(z)+\frac{1}{1-z}-z \tag{1}
\end{equation*}
$$

Hint: Multiply both sides of your recurrence equation by z^{n}; then sum on n. Rewrite your resulting sums in terms of $F(z)$.
4. Solve the equation above for $F(z)$ an perform a partial fraction decomposition on your result. Hint: The correct result is

$$
F(z)=\frac{1}{1-2 z}+\frac{1}{2} \cdot \frac{1}{1+z}-\frac{1}{2} \cdot \frac{1}{1-z} .
$$

Your answer should show your calculation to get this result.
5. Find a closed form expression (i.e. a formula) for f_{n}.

Hint: Apply the geometric series

$$
\frac{1}{1-a z}=\sum_{k=0}^{\infty} a^{k} z^{k}
$$

to each summand in the solution for $F(z)$ in Part 4 with $a=2, a=-1$ and $a=1$ and bring the result in a form that matches

$$
F(z)=\sum_{n=0}^{\infty} f_{n} z^{n}
$$

in order to find f_{n}.

Problem 47. Does there exist for every finite language $L \subseteq\{0,1\}^{*}$ a Turing machine D such that D

1. takes as input the code $\langle M\rangle$ of a Turing machine M that stops on every input and
2. decides whether $L \subseteq L(M)$ holds?

Justify your answer.
Problem 48. Consider a RAM program that evaluates the value of $\sum_{i=1}^{n} i^{2}$ in the naive way (by iteration). Analyze the worst-case asymptotic time and space complexity of this program assuming the existence of operations ADD r and MUL r for the addition and multiplication of the accumulator with the content of register r.

1. Determine a Θ-expression for the number $S(n)$ of registers used in the program with input n (space complexity).
2. Compute a Θ-expression for the number $T(n)$ of instructions executed for input n (time complexity in constant cost model),
3. Assume a simplified version of the logarithmic cost model of a RAM where the cost of every operaton is proportional to the length of the arguments involved. In particular, if a is the (bit) length of the accumulator and l is the (bit) length of the content of register r then MUL r costs $a+l$ and ADD r costs $\max (a, l)$.
Compute the asymptotic costs $C(n)$ (using O-notation) of the program for input n.

Problem 49. Show that the language

$$
L_{u, \varepsilon}^{\prime}=\{\langle M\rangle \mid M \text { does not accept } \varepsilon\}
$$

is not recursively enumerable.
Problem 50. Consider the following pseudo code of an implementation of a FIFO (first in first out) queue with two functions enqueue and dequeue.

```
input := EMPTYLIST
output := EMPTYLIST
function enqueue(e, input, output) { push(e, input) }
function dequeue(input, output) {
    if isempty(output) {
        while not isempty(input) { push(pop(input), output) }
    }
    pop(output)
}
```

Analyze its amortized cost of these functions by (a) the aggregate method and (b) the potential method.

Here,

- push (e, L) is the operation of adding an element e to the front of a list L,
- isempty (L) returns TRUE if the list L is empty,
- $\operatorname{pop}(\mathrm{L})$ is the operation that removes the first element of a list L and returns it.

All these operations are assumed to cost constant time.
In the code above, a queue is represented by a pair (input, output). Putting a new element into the queue via enqueue, first puts it to the front of input. Only when an element is requested via a call to dequeue, elements are moved from input to output list, thus effectively reversing input so that in total the queue returns its elements in a FIFO principle.
Hint: For the potential method you might want to consider the function Φ such that for a queue q that is represented by the pair (input, output) of two lists, $\Phi(q)$ is the size of the input list.

