| Gruppe | Popov (8:30) | Popov (9:15) | Popov (10:15) | Hemmecke (10:15) | | | Hemmecke (11:00) | | | | |
| :--- | :--- | :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Name | | | Matrikel | | | | | | SKZ | | |

Klausur 2
 Berechenbarkeit und Komplexität

10. Januar 2020

Part 1 RecFun2019

Let $f, g: \mathbb{N} \rightarrow_{P} \mathbb{N}$ be two partial functions that are defined as follows:

$$
f(x)=\left\{\begin{array}{ll}
\text { undefined, }, & \text { if } x<20, \\
1, & \text { if } x>2019, \\
f(x+1), & \text { otherwise } ;
\end{array} \quad g(x)= \begin{cases}1, & \text { if } x<20 \\
\text { undefined }, & \text { if } x>2019 \\
g(x+1), & \text { otherwise }\end{cases}\right.
$$

Let $H(x)=g(f(3 x+20))$ and $h(x)=f(x)+g(x)$.

$\mathbf{1}$	yes	
$\mathbf{2}$	yes	
$\mathbf{3}$	yes	

Is $f \mu$-recursive?
Is g Turing-computable?
Is H LOOP-computable?
Clearly, $f(x)=1$ for all $x \geq 20$. Thus, $\forall n \in \mathbb{N}: H(n)=g(1)=1$.

4		no \quad Is there a Turing machine that halts on every input and computes h ?

$f(x)$ is undefined for $x<20 . g(x)$ is undefined for $x \geq 20$. Therefore, h is nowhere defined. Of course, there is a Turing maching that computes h, but if it halts it would return a value, therefore it cannot halt.

Does there exist a WHILE-computable function that is not primitive recursive?

Part 2 Grammar2019
Consider the grammar $G=(N, \Sigma, P, S)$ where $N=\{S, A, B\}, \Sigma=\{0,1\}, P=$ $\{S \rightarrow 1 A A 0, A A \rightarrow A A A, A \rightarrow 0\}$.

$\mathbf{6}$		no
$\mathbf{7}$		no
$\mathbf{8}$		no
$\mathbf{9}$	yes	

Is $100 \in L(G)$?
Is $L(G)$ finite?
Is the grammar G right-linear?
Is there a deterministic finite state machine D such that $L(D)=L(G)$?
$L(G)=L\left(10000^{*}\right)$ is a regular language.

| $\mathbf{1 0}$ | | no \quad Suppose G^{\prime} is a grammar, M^{\prime} is a Turing machine that halts on every input word |
| :--- | :--- | :--- | and $L\left(G^{\prime}\right)=L\left(M^{\prime}\right)$? Does then follow that G^{\prime} is a context-free grammar?

The grammar G above is a counter-example.

Part 3 Decidable2019
Consider the following problems. In each problem below, the input of the problem is the code $\langle M\rangle$ of a Turing machine $M=\left(Q, \Gamma, \sqcup,\{0,1\}, \delta, q_{0}, F\right)$.
Problem A: Does $L(M)$ contain a word of length greater than 2019?
Problem B: Does M stop on the empty word after at most 2019 steps?
Problem C: Is there a deterministic finite state machine D with $L(M)=L(D)$?
Problem D: Is there a primitive recursive function f with $L(M)=\left\{0^{f(n)} \mid n \in \mathbb{N}\right\}$?
Note: For $k \in \mathbb{N}$ the expression 0^{k} denotes the word that consists of k letters 0 .

$\mathbf{1 1}$	yes		Is A semi-decidable?	
$\mathbf{1 2}$	yes		Is B semi-decidable?	
$\mathbf{1 3}$		no	Is C decidable?	

Rice Theorem.

$\mathbf{1 4}$		no \quad Is D decidable?

The property of recursively enumerable languages to be of the above form is certainly not trivial, therefore not decidable by the theorem of Rice.

| $\mathbf{1 5}$ | yes \quad Let f be a primitive recursive function and L be a recursive language. Let $K:=$ |
| :--- | :--- | :--- | $\left\{0^{n} \mid n \in \mathbb{N}\right.$ such that $\left.0^{f(n)} \in L\right\} \subseteq\{0,1\}^{*}$. Is the set K decidable?

Part 4 Complexity2019
Let $f(n)=20^{19 \cdot n}, g(n)=n^{2019}$, and $h(n)=g\left(\log _{2}(f(n))\right)=\left(19 n \log _{2} 20\right)^{2019}$.

$\mathbf{1 6}$		no
$\mathbf{1 7}$	yes	
$\mathbf{1 8}$	yes	
$\mathbf{1 9}$	yes	

Is it true that $f(n)=O(g(n))$?
Is it true that $g(n)=\Theta(h(n))$?
Is it true that $2^{n}=\Omega\left(\sqrt{2^{n}}\right)$?
Is it true that $(2 n)^{n}=O\left(n^{2 n}\right)$?
Part 5 LoopWhile2019
Let $f, g: \mathbb{N}^{2} \rightarrow \mathbb{N}$ be defined as follows
$f(a, b):=\left\{\begin{array}{ll}2019, & \text { if } a=b, \\ 0, & \text { otherwise } ;\end{array} \quad g(a, b):= \begin{cases}0, & \text { if } a=b, \\ \text { undefined, }, & \text { otherwise } .\end{cases}\right.$

$\mathbf{2 0}$		no
$\mathbf{2 1}$	yes	

Are both f and g LOOP computable functions?
Is (μf) a LOOP computable function?
$(\mu f)(0)=1$ and $(\mu f)(n)=0$ for all $n \in \mathbb{N} \backslash\{0\}$.

22		no \quad Is $(\mu g)(1)=0$?

Since $g(0,1)$ is undefined, $(\mu g)(1)$ is undefined, as well.

| $\mathbf{2 3}$ | yes \quad Is ($\mu \mathrm{g})$ a WHILE computable functions? |
| :--- | :--- | :--- |

Part 6 OpenComputability2019
Let $L=\left\{0^{k} 10^{k} \mid k \in \mathbb{N}\right\} \subseteq\{0,1\}^{*}$. For a Turing machine M we denote by

- $t_{M}(n)$ the maximal number of steps that M takes until it accepts or rejects a word of length n and by
- $s_{M}(n)$ the maximal distance that the head of M moves away from the beginning of the tape during the computation on an input word of length n.
$\mathbf{2 4} 1$ Point Determine the asymptotic time complexity of a Turing machine M with minimum time complexity that accepts $L: t_{M}(n)=\Theta($

$$
t_{M}(n)=\Theta\left(n^{2}\right)
$$

Determine the asymptotic space complexity of a Turing machine M with minimum space complexity that accepts $L: s_{M}(n)=\Theta(\quad)$.

$$
s_{M}(n)=\Theta(n)
$$

