Gruppe	Popov (8:30)	Popov (9:15)	Popov (10:15)	Hemmecke $(10:15)$	Hemmecke (11:00)
Name				Matrikel	SKZ

Klausur 2 Berechenbarkeit und Komplexität

10. Januar 2020

Part 1 RecFun2019 Let $f, g: \mathbb{N} \to_P \mathbb{N}$ be two partial functions that are defined as follows: $f(x) = \begin{cases} undefined, & if \ x < 20, \\ 1, & if \ x > 2019, \\ f(x+1), & otherwise; \end{cases} \qquad g(x) = \begin{cases} 1, & if \ x < 20, \\ undefined, & if \ x > 2019, \\ g(x+1), & otherwise. \end{cases}$ Let H(x) = q(f(3x+20)) and h(x) = f(x) + q(x). yes Is $f \mu$ -recursive? 1 $\mathbf{2}$ Is q Turing-computable? yes yes Is H LOOP-computable? 3 Clearly, f(x) = 1 for all $x \ge 20$. Thus, $\forall n \in \mathbb{N} : H(n) = g(1) = 1$. Is there a Turing machine that halts on every input and computes h? $\mathbf{4}$ no f(x) is undefined for x < 20. g(x) is undefined for $x \ge 20$. Therefore, h is nowhere defined. Of course, there is a Turing maching that computes h, but if it halts it would return a value, therefore it cannot halt. Does there exist a WHILE-computable function that is not primitive recursive? 5 yes Part 2 Grammar2019 Consider the grammar $G = (N, \Sigma, P, S)$ where $N = \{S, A, B\}, \Sigma = \{0, 1\}, P =$ $\{S \rightarrow 1AA0, AA \rightarrow AAA, A \rightarrow 0\}.$ Is $100 \in L(G)$? 6 no Is L(G) finite? 7 no 8 no Is the grammar G right-linear? Is there a deterministic finite state machine D such that L(D) = L(G)? 9 yes $L(G) = L(10000^*)$ is a regular language.

> Suppose G' is a grammar, M' is a Turing machine that halts on every input word and L(G') = L(M')? Does then follow that G' is a context-free grammar?

The grammar G above is a counter-example.

Part 3 Decidable2019

10

no

Consider the following problems. In each problem below, the input of the problem is the code $\langle M \rangle$ of a Turing machine $M = (Q, \Gamma, \sqcup, \{0, 1\}, \delta, q_0, F)$. Problem A: Does L(M) contain a word of length greater than 2019? Problem B: Does M stop on the empty word after at most 2019 steps? Problem C: Is there a deterministic finite state machine D with L(M) = L(D)? Problem D: Is there a primitive recursive function f with $L(M) = \{0^{f(n)} | n \in \mathbb{N}\}$? Note: For $k \in \mathbb{N}$ the expression 0^k denotes the word that consists of k letters 0.

11 yes 12 yes	Is A semi-decidable? Is B semi-decidable?
13 no	Is C decidable?
	Rice Theorem.
14 no	Is D decidable?
	The property of recursively enumerable languages to be of the above form is certainly not trivial, therefore not decidable by the theorem of Rice.
15 yes	Let f be a primitive recursive function and L be a recursive language. Let $K := \{ 0^n \mid n \in \mathbb{N} \text{ such that } 0^{f(n)} \in L \} \subseteq \{0,1\}^*$. Is the set K decidable?
	art 4 Complexity2019 et $f(n) = 20^{19 \cdot n}$, $g(n) = n^{2019}$, and $h(n) = g(\log_2(f(n))) = (19n \log_2 20)^{2019}$.
16 no 17 yes	Is it true that $f(n) = O(g(n))$? Is it true that $g(n) = \Theta(h(n))$?
18 yes 19 yes	Is it true that $2^n = \Omega(\sqrt{2^n})$? Is it true that $(2n)^n = O(n^{2n})$?
	art 5 <i>Loop While2019</i> <i>et f,g</i> : $\mathbb{N}^2 \to \mathbb{N}$ <i>be defined as follows</i>
	$f(a,b) := \begin{cases} 2019, & \text{if } a = b, \\ 0, & \text{otherwise;} \end{cases} \qquad \qquad g(a,b) := \begin{cases} 0, & \text{if } a = b, \\ undefined, & \text{otherwise.} \end{cases}$
20 no 21 yes	Are both f and g LOOP computable functions? Is (μf) a LOOP computable function?
	Are both f and g LOOP computable functions?
	Are both f and g LOOP computable functions? Is (μf) a LOOP computable function?
21 yes	Are both f and g LOOP computable functions? Is (μf) a LOOP computable function? $(\mu f)(0) = 1$ and $(\mu f)(n) = 0$ for all $n \in \mathbb{N} \setminus \{0\}$.
21 yes	Are both f and g LOOP computable functions? Is (μf) a LOOP computable function? $(\mu f)(0) = 1$ and $(\mu f)(n) = 0$ for all $n \in \mathbb{N} \setminus \{0\}$. Is $(\mu g)(1) = 0$?
21 yes 22 no 23 yes Pa	Are both f and g LOOP computable functions? Is (μf) a LOOP computable function? $(\mu f)(0) = 1$ and $(\mu f)(n) = 0$ for all $n \in \mathbb{N} \setminus \{0\}$. Is $(\mu g)(1) = 0$? Since $g(0, 1)$ is undefined, $(\mu g)(1)$ is undefined, as well.
21 yes 22 no 23 yes Pa	Are both f and g LOOP computable functions? Is (μf) a LOOP computable function? $(\mu f)(0) = 1$ and $(\mu f)(n) = 0$ for all $n \in \mathbb{N} \setminus \{0\}$. Is $(\mu g)(1) = 0$? Since $g(0,1)$ is undefined, $(\mu g)(1)$ is undefined, as well. Is (μg) a WHILE computable functions? art 6 OpenComputability2019
21 yes 22 no 23 yes Pa	Are both f and g LOOP computable functions? Is (μf) a LOOP computable function? $(\mu f)(0) = 1$ and $(\mu f)(n) = 0$ for all $n \in \mathbb{N} \setminus \{0\}$. Is $(\mu g)(1) = 0$? Since $g(0,1)$ is undefined, $(\mu g)(1)$ is undefined, as well. Is (μg) a WHILE computable functions? art 6 OpenComputability2019 et $L = \{0^k 10^k k \in \mathbb{N}\} \subseteq \{0,1\}^*$. For a Turing machine M we denote by • $t_M(n)$ the maximal number of steps that M takes until it accepts or rejects a
21 yes 22 no 23 yes Pa	Are both f and g LOOP computable functions? Is (μf) a LOOP computable function? $(\mu f)(0) = 1$ and $(\mu f)(n) = 0$ for all $n \in \mathbb{N} \setminus \{0\}$. Is $(\mu g)(1) = 0$? Since $g(0,1)$ is undefined, $(\mu g)(1)$ is undefined, as well. Is (μg) a WHILE computable functions? art 6 $OpenComputability2019$ et $L = \{0^{k}10^{k} k \in \mathbb{N}\} \subseteq \{0,1\}^{*}$. For a Turing machine M we denote by • $t_{M}(n)$ the maximal number of steps that M takes until it accepts or rejects a word of length n and by • $s_{M}(n)$ the maximal distance that the head of M moves away from the beginning
21 yes 22 no 23 yes Pa Le	Are both f and g LOOP computable functions? Is (μf) a LOOP computable function? $(\mu f)(0) = 1$ and $(\mu f)(n) = 0$ for all $n \in \mathbb{N} \setminus \{0\}$. Is $(\mu g)(1) = 0$? Since $g(0,1)$ is undefined, $(\mu g)(1)$ is undefined, as well. Is (μg) a WHILE computable functions? art 6 OpenComputability2019 et $L = \{0^{k}10^{k} k \in \mathbb{N}\} \subseteq \{0,1\}^{*}$. For a Turing machine M we denote by • $t_{M}(n)$ the maximal number of steps that M takes until it accepts or rejects a word of length n and by • $s_{M}(n)$ the maximal distance that the head of M moves away from the beginning of the tape during the computation on an input word of length n. Determine the asymptotic time complexity of a Turing machine M with minimum
21 yes 22 no 23 yes Pa Le	Are both f and g LOOP computable functions? Is (μf) a LOOP computable function? $(\mu f)(0) = 1$ and $(\mu f)(n) = 0$ for all $n \in \mathbb{N} \setminus \{0\}$. Is $(\mu g)(1) = 0$? Since $g(0,1)$ is undefined, $(\mu g)(1)$ is undefined, as well. Is (μg) a WHILE computable functions? art 6 <u>OpenComputability2019</u> et $L = \{0^{k}10^{k} k \in \mathbb{N}\} \subseteq \{0,1\}^{*}$. For a Turing machine M we denote by • $t_{M}(n)$ the maximal number of steps that M takes until it accepts or rejects a word of length n and by • $s_{M}(n)$ the maximal distance that the head of M moves away from the beginning of the tape during the computation on an input word of length n. Determine the asymptotic time complexity of a Turing machine M with minimum time complexity that accepts L: $t_{M}(n) = \Theta($).