
BeKomp Problem Set 9 due date: 16/17 January 2020

Problems Solved: 41 42 43 44 45

Name:

Matrikel-Nr.:

Problem 41. Let L =
{
ww−1

∣∣w ∈ {0, 1}∗} be the language of palindromes.
Here w−1 denotes the �mirrored� word, i. e., if w = l1l2 · · · lr then w−1 =
lr . . . l2l1.

• Describe (informally) a Turing machine M with L(M) = L.

• Analyse the time and space complexity of M .

Problem 42. Let X be a monoid. Device an �algorithm� (as recursive/iterative
pseudo-code in the style of Chapter 6 of the lecture notes) for the computation
of xn for x ∈ X,n ∈ N that uses less multiplications than the naive algorithm of
n times multiplying x to the result obtained so far. Determine the complexity
as M(n), i.e., the number of multiplications of your �algorithm� depending on
the exponent n.
Hint: Note that x8 can be computed with just 3 multiplications while the naive
algorithm would use 7 multiplications. Based on this observation, the algorithm
can be based on a kind of "binary powering" strategy.

Problem 43. Let T (n) be given by the recurrence relation

T (n) = 3T (bn/2c).

and the initial value T (1) = 1. Show that T (n) = O(nα) with α = log2(3).
Hint: De�ne P (n) : ⇐⇒ T (n) ≤ nα. Show that P (n) holds for all n ≥ 1 by
induction on n. It is not necessary to restrict your attention to powers of two.

Problem 44. Let T (n) be number of times that line 2 is executed in the worst
case while running P (a, b) where n := b− a.

1 int foo[] = ... // array of big enough size

2 procedure P(int a, int b)

3 if (a + 1 < b) {

4 int h = floor((a + b) / 2);

5 if foo[h] >= 0 then P(a, h)

6 if foo[h] <= 0 then P(h, b)

7 }

8 end procedure

1. Compute T (1), T (2), T (3) and T (4).

2. Give a recurrence relation for T (n).

3. Solve your recurrence relation for T (n) in the special case where n = 2m

is a power of two.

4. Use the Master Theorem to determine asymptotic bounds for T (n).

Berechenbarkeit und Komplexität, WS2019 1

BeKomp Problem Set 9 due date: 16/17 January 2020

Note that floor denotes the function that returns the biggest integer value that
is smaller than or equal to the argument.

Problem 45. Given two algorithms A and B for computing the same problem.
For their time complexity we have

tA(n) =
√
n and tB(n) = 2

√
log2 n.

1. Construct a table for tA(n) and tB(n). Can you give a value N such that
for all n ≥ N one of the algorithms always seems faster than the other
one?

2. Based on your result of the question above, you may conjecture tA(n) =
O(tB(n)) and/or tB(n) = O(tA(n)). Prove your conjecture(s) formally on
the basis of the O notation.

Hint : remember that for all x, y > 0 we have

x = 2log2 x

log2 x
y = y · log2 x
√
x = x

1
2

x ≤ y ⇒ 2x ≤ 2y

which may become handy in your proof.

Berechenbarkeit und Komplexität, WS2019 2

