0 ~J O U ix Wi

BeKomp Problem Set 9 due date: 16/17 January 2020

Problems Solved: ’ 41 \ 42 \ 43 \ 44 \ 45 ‘

Name:

Matrikel-Nr.:

Problem 41. Let L = {ww ™' |w € {0,1}" } be the language of palindromes.
Here w™! denotes the “mirrored” word, i.e., if w = lily---1, then w™!
I ... ol

e Describe (informally) a Turing machine M with L(M) = L.

e Analyse the time and space complexity of M.

Problem 42. Let X be a monoid. Device an “algorithm” (as recursive/iterative
pseudo-code in the style of Chapter 6 of the lecture notes) for the computation
of ™ for z € X, n € N that uses less multiplications than the naive algorithm of
n times multiplying x to the result obtained so far. Determine the complexity
as M(n), i.e., the number of multiplications of your “algorithm” depending on
the exponent n.

Hint: Note that 2® can be computed with just 3 multiplications while the naive
algorithm would use 7 multiplications. Based on this observation, the algorithm
can be based on a kind of "binary powering" strategy.

Problem 43. Let T'(n) be given by the recurrence relation
T(n) = 3T([n/2]).

and the initial value T'(1) = 1. Show that T'(n) = O(n®) with a = log,(3).
Hint: Define P(n) : <= T(n) < n®. Show that P(n) holds for all n > 1 by
induction on n. It is not necessary to restrict your attention to powers of two.

Problem 44. Let T'(n) be number of times that line 2 is executed in the worst
case while running P(a,b) where n :=b — a.

int fooll = ... // array of big enough size
procedure P(int a, int b)
if (a + 1 <b) Ao
int h = floor((a + b) / 2);
if foo[h] >= 0 then P(a, h)
if fool[h] <= 0 then P(h, b)
}

end procedure

1. Compute T'(1), T(2), T(3) and T'(4).
2. Give a recurrence relation for T'(n).

3. Solve your recurrence relation for 7'(n) in the special case where n = 2™
is a power of two.

4. Use the Master Theorem to determine asymptotic bounds for T'(n).

Berechenbarkeit und Komplexitidt, WS2019 1

BeKomp Problem Set 9 due date: 16/17 January 2020

Note that floor denotes the function that returns the biggest integer value that
is smaller than or equal to the argument.

Problem 45. Given two algorithms A and B for computing the same problem.
For their time complexity we have

ta(n)=+/n and tg(n)=2V0e",

1. Construct a table for ¢t 4(n) and ¢5(n). Can you give a value N such that
for all n > N one of the algorithms always seems faster than the other
one?

2. Based on your result of the question above, you may conjecture t4(n) =
O(tp(n)) and/or tg(n) = O(ta(n)). Prove your conjecture(s) formally on
the basis of the O notation.

Hint: remember that for all z,y > 0 we have
= ologa
logs x¥ =y -logy @
Vo = o
r<y = 2< 2

which may become handy in your proof.

Berechenbarkeit und Komplexitidt, WS2019 2

