Problems Solved:

| 41 | 42 | 43 | 44 | 45

Name:

Matrikel-Nr.:

Problem 41. Let $L = \{ww^{-1} | w \in \{0,1\}^*\}$ be the language of palindromes. Here w^{-1} denotes the "mirrored" word, i.e., if $w = l_1 l_2 \cdots l_r$ then $w^{-1} = l_r \dots l_2 l_1$.

- Describe (informally) a Turing machine M with L(M) = L.
- Analyse the time and space complexity of *M*.

Problem 42. Let X be a monoid. Device an "algorithm" (as recursive/iterative pseudo-code in the style of Chapter 6 of the lecture notes) for the computation of x^n for $x \in X, n \in \mathbb{N}$ that uses less multiplications than the naive algorithm of n times multiplying x to the result obtained so far. Determine the complexity as M(n), i.e., the number of multiplications of your "algorithm" depending on the exponent n.

Hint: Note that x^8 can be computed with just 3 multiplications while the naive algorithm would use 7 multiplications. Based on this observation, the algorithm can be based on a kind of "binary powering" strategy.

Problem 43. Let T(n) be given by the recurrence relation

$$T(n) = 3T(\lfloor n/2 \rfloor).$$

and the initial value T(1) = 1. Show that $T(n) = O(n^{\alpha})$ with $\alpha = \log_2(3)$. Hint: Define $P(n) : \iff T(n) \le n^{\alpha}$. Show that P(n) holds for all $n \ge 1$ by induction on n. It is not necessary to restrict your attention to powers of two.

Problem 44. Let T(n) be number of times that line 2 is executed in the worst case while running P(a, b) where n := b - a.

```
int foo[] = ... // array of big enough size
1
\mathbf{2}
  procedure P(int a, int b)
3
       if (a + 1 < b) {
4
           int h = floor((a + b) / 2);
           if foo[h] >= 0 then P(a, h)
5
6
           if foo[h] <= 0 then P(h, b)
7
       }
8
  end procedure
```

- 1. Compute T(1), T(2), T(3) and T(4).
- 2. Give a recurrence relation for T(n).
- 3. Solve your recurrence relation for T(n) in the special case where $n = 2^m$ is a power of two.
- 4. Use the Master Theorem to determine asymptotic bounds for T(n).

Berechenbarkeit und Komplexität, WS2019

Note that floor denotes the function that returns the biggest integer value that is smaller than or equal to the argument.

Problem 45. Given two algorithms A and B for computing the same problem. For their time complexity we have

$$t_A(n) = \sqrt{n}$$
 and $t_B(n) = 2\sqrt{\log_2 n}$.

- 1. Construct a table for $t_A(n)$ and $t_B(n)$. Can you give a value N such that for all $n \ge N$ one of the algorithms always seems faster than the other one?
- 2. Based on your result of the question above, you may conjecture $t_A(n) = O(t_B(n))$ and/or $t_B(n) = O(t_A(n))$. Prove your conjecture(s) formally on the basis of the O notation.

Hint: remember that for all x, y > 0 we have

$$x = 2^{\log_2 x}$$
$$\log_2 x^y = y \cdot \log_2 x$$
$$\sqrt{x} = x^{\frac{1}{2}}$$
$$x \le y \implies 2^x \le 2^y$$

which may become handy in your proof.