Problems Solved:

41	42	43	44	45

Name:

Matrikel-Nr.:

Problem 41. Let $L=\left\{w w^{-1} \mid w \in\{0,1\}^{*}\right\}$ be the language of palindromes. Here w^{-1} denotes the "mirrored" word, i.e., if $w=l_{1} l_{2} \cdots l_{r}$ then $w^{-1}=$ $l_{r} \ldots l_{2} l_{1}$.

- Describe (informally) a Turing machine M with $L(M)=L$.
- Analyse the time and space complexity of M.

Problem 42. Let X be a monoid. Device an "algorithm" (as recursive/iterative pseudo-code in the style of Chapter 6 of the lecture notes) for the computation of x^{n} for $x \in X, n \in \mathbb{N}$ that uses less multiplications than the naive algorithm of n times multiplying x to the result obtained so far. Determine the complexity as $M(n)$, i.e., the number of multiplications of your "algorithm" depending on the exponent n.
Hint: Note that x^{8} can be computed with just 3 multiplications while the naive algorithm would use 7 multiplications. Based on this observation, the algorithm can be based on a kind of "binary powering" strategy.

Problem 43. Let $T(n)$ be given by the recurrence relation

$$
T(n)=3 T(\lfloor n / 2\rfloor)
$$

and the initial value $T(1)=1$. Show that $T(n)=O\left(n^{\alpha}\right)$ with $\alpha=\log _{2}(3)$.
Hint: Define $P(n): \Longleftrightarrow T(n) \leq n^{\alpha}$. Show that $P(n)$ holds for all $n \geq 1$ by induction on n. It is not necessary to restrict your attention to powers of two.

Problem 44. Let $T(n)$ be number of times that line 2 is executed in the worst case while running $P(a, b)$ where $n:=b-a$.

```
int foo[] = ... // array of big enough size
procedure P(int a, int b)
    if (a + 1 < b) {
        int h = floor( (a + b) / 2 );
        if foo[h] >= 0 then P(a, h)
        if foo[h] <= 0 then P(h, b)
    }
end procedure
```

1. Compute $T(1), T(2), T(3)$ and $T(4)$.
2. Give a recurrence relation for $T(n)$.
3. Solve your recurrence relation for $T(n)$ in the special case where $n=2^{m}$ is a power of two.
4. Use the Master Theorem to determine asymptotic bounds for $T(n)$.

Note that floor denotes the function that returns the biggest integer value that is smaller than or equal to the argument.

Problem 45. Given two algorithms A and B for computing the same problem. For their time complexity we have

$$
t_{A}(n)=\sqrt{n} \quad \text { and } \quad t_{B}(n)=2^{\sqrt{\log _{2} n}}
$$

1. Construct a table for $t_{A}(n)$ and $t_{B}(n)$. Can you give a value N such that for all $n \geq N$ one of the algorithms always seems faster than the other one?
2. Based on your result of the question above, you may conjecture $t_{A}(n)=$ $O\left(t_{B}(n)\right)$ and /or $t_{B}(n)=O\left(t_{A}(n)\right)$. Prove your conjecture(s) formally on the basis of the O notation.

Hint: remember that for all $x, y>0$ we have

$$
\begin{gathered}
x=2^{\log _{2} x} \\
\log _{2} x^{y}=y \cdot \log _{2} x \\
\sqrt{x}=x^{\frac{1}{2}} \\
x \leq y \Rightarrow 2^{x} \leq 2^{y}
\end{gathered}
$$

which may become handy in your proof.

