Problems Solved:

36 | 37 | 38 | 39 | 40

Name:

Matrikel-Nr.:

Problem 36. Which of the following statements are true? Justify your answer.

- 1. $\log(n^{100})$ is $O(\sqrt{n})$
- 2. $\varphi(n^{-100})$ is O(n) where $\varphi(x) = 10^x$.
- 3. $n^2 2n$ is O(n)
- 4. For all $\varepsilon > 0$: $\sqrt{e^n}$ ist $O(e^{\varepsilon n})$
- 5. There exists $\varepsilon > 0$ and $k \in \mathbb{N} \setminus \{0\}$ such that $e^{\varepsilon n}$ is $O(n^k)$.
- 6. For all $\varepsilon > 0$ and for all $k \in \mathbb{N} \setminus \{0\}$: $e^{\varepsilon n}$ is $O(k^n)$.
- 7. 2^n is $O(8^n)$
- 8. 8^n is $O(2^n)$

Prove at least one of your answers based on the formal definition of O(f(n)), i.e., for all functions $f, g: \mathbb{N} \to \mathbb{R}_{\geq 0}$ we have

$$g(n) = O(f(n)) \iff \exists c \in \mathbb{R}_{>0} : \exists N \in \mathbb{N} : \forall n \ge N : g(n) \le c \cdot f(n).$$

Problem 37. Let $f, g, h : \mathbb{N} \to \mathbb{R}_{\geq 0}$. Prove or disprove based on Definition 45 from the lecture notes.

1. f(n) = O(f(n))

2.
$$f(n) = O(g(n)) \implies g(n) = O(f(n))$$

3.
$$f(n) = O(g(n)) \land g(n) = O(h(n)) \implies f(n) = O(h(n))$$

Problem 38. Write a LOOP program in the core syntax (variables may be only incremented/decremented by 1) that computes the function $f : \mathbb{N} \to \mathbb{N}$, $f(n) = 2^n$.

- 1. Count the number of variable assignments (depending on n) during the execution of your LOOP program with input n.
- 2. What is the time complexity (the asymptotic complexity of the number of variable assignments) of your program (depending on n)?
- 3. Is it possible to write a LOOP program with time complexity better than $O(2^n)$? Give an informal reasoning of your answer.
- 4. Optional. Let l(k) denote the bit length of a number $k \in \mathbb{N}$. Let b = l(n), i.e., b denotes the bit length of the input. What is the time complexity of your program depending on b, if every variable assignment $x_i := x_j + 1$ costs time $O(l(x_j))$?

Hint: You must determine an O-notation for $s(n) = \sum_{k=0}^{2^n-1} l(k)$. Split this sum into $s(n) = \sum_{k=0}^{2^{n-1}-1} l(k) + \sum_{k=0}^{2^{n-1}-1} l(2^{n-1}+k)$. The number of bits of each term of the second sum is easy to determine. Compare the first sum with s(n-1). Then continue by expanding s(n-1) in the same way.

Berechenbarkeit und Komplexität, WS2019

Problem 39. Let $\Sigma = \{0, 1\}$ and let $L \subseteq \Sigma^*$ be the set of binary numbers divisible by 3, i.e.,

$$L = \{x_n \dots x_1 x_0 : 3 \text{ divides } \sum_{k=0}^n x_k 2^k\}$$

(By convention, the empty string ε denotes the number 0 and so it is in L too.)

- 1. Design a Turing machine M with input alphabet Σ which recognizes L, halts on every input, and has (worst-case) time complexity T(n) = n. Write down your machine formally. (A picture is not needed.) *Hint:* Three states q_0, q_1, q_2 suffice. The machine is in state q_r if the bits read so far yield a binary number which leaves a remainder of r upon division by 3. The transition from one state to another represents a multiplication by 2 and the addition of 0 or 1.
- 2. Determine S(n), $\overline{T}(n)$ and $\overline{S}(n)$ for your Turing machine.
- 3. Is there some faster Turing machine that achieves $\overline{T}(n) < n$? (Justify your answer.)

Problem 40. Define concrete languages L_i (i = 1, ..., 4) over the alphabet $\Sigma = \{0, 1\}$ such that L_i has infinitely many words and $L_i \neq \Sigma^*$. The following properties must be fulfilled.

- (i) There exists (deterministic) Turing machine M_1 with $L_1 = L(M_1)$ such that every word $w \in L_1$ is accepted in O(1) steps.
- (ii) Every (deterministic) Turing machine M_2 with $L_2 = L(M_2)$ needs at least O(n) steps to accept a word $w \in L_2$ with $|w| = n \in \mathbb{N}$.
- (iii) Every (deterministic) Turing machine M_3 with $L_3 = L(M_3)$ needs at least $O(n^2)$ steps to accept a word $w \in L_3$ with $|w| = n \in \mathbb{N}$.
- (iv) Every (deterministic) Turing machine M_4 with $L_4 = L(M_4)$ needs at least $O(2^n)$ steps to accept a word $w \in L_4$ with $|w| = n \in \mathbb{N}$.

By concrete language it is meant that your definition defines an explicit set of words (preferably of the form $L_i = \{w \in \Sigma^* | \dots\}$) and not simply a class from which to choose. In other words,

Let $L_1 \neq \Sigma^*$ be an infinite language such that (i) holds.

does not count as a *concrete* language.

In each case (informally) argue why your language fulfills the respective conditions.

Note that the exercise asks about acceptance of a word, not the computation of a result.

Berechenbarkeit und Komplexität, WS2019