
Frama-C and ACSL

Frama-C and ACSL

Michael Wipplinger

December 2, 2019

Frama-C and ACSL

What is Frama-C?

Installation

How to use Frama-C

Dynamic Verification

Static Verification

ACSL Basics
Function Contracts
Predicates
Loop Invariants

Conclusion

Sources

Frama-C and ACSL

What is Frama-C?

What is Frama-C?

Frama-C is a platform for the analysis of C code. It provides:

I a ”normalization” of your code

I value analysis

I metrics of functions and programs

I slicing of code

I impact analyis

I prove methods for specifications written in ACSL

Frama-C and ACSL

Installation

Installation

I Install a WSL (Windows only)

I Install XLaunch Server (Windows only)

I Install opam

I With opam install Frama-C

Precise instructions and downloads can be found HERE.

https://frama-c.com/install-19.1-Potassium.html]

Frama-C and ACSL

How to use Frama-C

How to use Frama-C

I Write your code with ACSL specifications in the comments
using your favourite text editor

I Compile your code as always

I Launch Frama-C and open the source files (console:
frama-c-gui filename.c)

I analyse

I In order to edit your code, run a text editor simultaneously,
save your changes in the editor and click the ”Refresh
Button” in the Frama-C GUI (you might need to re-compile)

I If you cannot open a file, it might be due to a syntax error
(try using the console command to get the location and type
of error)

Frama-C and ACSL

Dynamic Verification

Dynamic Verification

Dynamic Verification is performed during runtime. For example:
I E-ACSL

I Builds a program that does the same things but reports an
error every time a ACSL specification is violated during
runtime.

I StaDy
I Does the same as E-ACSL but searches the argument space to

generate counterexamples.

Frama-C and ACSL

Static Verification

Static Verification

Static Verification relies only upon source code analysis.
Expamples are:
I value analysis

I Shows possible or exact values for variables.

I slicing
I Splits a program into smaller, simpler programs

I Provers
I Provers like Alt-Ergo and Coq try to prove properties defined

in ACSL

Frama-C and ACSL

ACSL Basics

ACSL Basics

ACSL stands for ANSI C Specification Language and is a formal
language that allows us to specify properties of functions and
variables which can than be interpreted by different applications.
We can, for example, define:

I assertions, can be placed everywhere in the code and describe
properties that should hold at that point in the program

I requirements for function arguments and what is supposed to
hold for the result (function contracts).

I predicates (as in first order logic)

I axioms and lemmas (e.g. for algebraic data types or to help
the prover)

Frama-C and ACSL

ACSL Basics

ACSL Basics

I ACSL code is written in comments of the form /*@ ... */

or //@
I Expressions are formed with standard C operators and types

as well as Built-in constructs like
I \forall and \exists
I \true and \false
I ==> and <==>
I mathematical integers and reals
I \at(term,label-id)
I \valid(ptr) and other predefined predicates

Frama-C and ACSL

ACSL Basics

Function Contracts

Function Contracts

For any function we can define specifications, documenting what
the function does. The syntax is as follows:

/*@

reqires predicate;*

terminates predicate;

decreases term;

assigns location (, location)* | \nothing;

ensures predicate;

behavior bahavior_name:*

assumes predicate;*

requires predicate;*

assigns location (, location)* | \nothing;

ensures predicate;*

Frama-C and ACSL

ACSL Basics

Function Contracts

complete behaviors behavior_name (, behavior_name)*;*

disjoint behaviors behavior_name (, behavior_name)*;*

*/

type function_name(...)

{

...

}

Where * implies that the prior expression can be repeated and |

means one can choose between the left and right option.

Frama-C and ACSL

ACSL Basics

Predicates

Predicates

Can be defined directly:

/*@

predicate predicate_name{State}(arguments) = expression;

*/

e.g.

/*@

predicate divides(int a, int b) = {\exists integer c; c*a == b;};

*/

Frama-C and ACSL

ACSL Basics

Predicates

Predicates

Can be defined inductively, e.g.:

/*@

inductive is_gcd(int g, int a, int b) {

case a_is_zero:

\forall integer a, integer b; a == 0 ==> is_gcd(b,a,b);

case b_is_zero:

\forall integer a, integer b; b == 0 ==> is_gcd(a,a,b);

case valid_transform:

\forall integer a, integer b, integer g; is_gcd(g,a,b) && b != 0 ==> is_gcd(g,b,a%b);

*/

Frama-C and ACSL

ACSL Basics

Loop Invariants

Loop Invariants

A loop invariant is defined right above a C-loop like while, for or
do ... while.

/*@

loop invariant predicate;*

loop assigns location (, location)*;

for behavior_name:*

loop invariant predicate;*

loop assigns predicate;*

loop variant term;*

loop variant term;*

*/

Note that behavior_name comes from the behavior defined in the
function contract.

Frama-C and ACSL

Conclusion

Conclusion

I Installation worked well

I Working with Frama-C requires some time to get used to

I Proving properties requires extensive use of ACSL
specifications, in a scale similar to writing the program a
second time.

I Many libraries are not yet supported.

I There exists good documentation out there, but it is not as
easy to find as for other languages

I However the basics of ACSL are very intuitive and if it works,
it works for sure.

Frama-C and ACSL

Sources

I Links:
I Official Mini-Tutorial by Virgile Prevosto here
I ACSL by Example by Jochen Burghardt et. al. here
I Official Documentation of ACSL in Frama-C by Patrick Baudin

et. al. here
I Some very useful examples for beginners on github here

https://frama-c.com/download/acsl-tutorial.pdf
https://www.cs.umd.edu/class/spring2016/cmsc838G/frama-c/ACSL-by-Example-12.1.0.pdf
https://frama-c.com/download/acsl.pdf
https://github.com/evdenis/acsl-proved

	What is Frama-C?
	Installation
	How to use Frama-C
	Dynamic Verification
	Static Verification
	ACSL Basics
	Function Contracts
	Predicates
	Loop Invariants

	Conclusion
	Sources

