| Gruppe | Popov (8:30) | Popov (9:15) | Popov (10:15) | Hemmecke (10:15) | Hemmecke (11:00) | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Name | | | Matrikel | | | | | | SKZ | | |

Klausur 1
 Berechenbarkeit und Komplexität

22. November 2019

Part 1 NFSM2019
Let N be the nondeterministic finite state machine

$$
\left(\left\{q_{0}, q_{1}, q_{2}, q_{3}, q_{4}, q_{5}, q_{6}, q_{7}\right\},\{0,1\}, \nu,\left\{q_{0}\right\},\left\{q_{1}, q_{3}, q_{5}, q_{7}\right\}\right)
$$

whose transition function ν is given below.

$\mathbf{1}$		no \quad Is $1001100111 \in L(N)$?

The sequence is not defined by the transition.

Follow the states $q_{0}, q_{1}, q_{3}, q_{5}, q_{4}, q_{6}, q_{5}$.

Is $L(N)$ finite?
Does there exist a regular expression r such that $L(r)=\overline{L(N)}=\{0,1\}^{*} \backslash$ $L(N)$?
$L(N)$ is regular and so is its complement.

$\mathbf{5}$	yes	

$L(N)$ is regular. Hence, $\overline{L(N)}$ is regular, and thus also recursively enumerable.

| $\mathbf{6}$ | yes | \quad Is there a deterministic finite state machine M with less than 2019 states |
| :--- | :--- | :--- | :--- | such that $L(M)=L(N)$?

According to the subset construction, there must be a DFSM with at most $2^{8}=256$ states.

7	yes	
8	yes	

Is there an enumerator Turing machine G such that $G e n(G)=L(N)$?
Does there exists a deterministic finite state machine D such that $L(D)=$ $L(N) \circ \overline{L(N)}$?
$L(N)$ and $\overline{L(N)}$ are both regular. Concatenation of two regular languages gives a regular language.

Part 2 Computable2019
Let M be a Turing machine such that whenever M accepts a word, it does so in no more than 2019 steps.

$\mathbf{9}$	yes		Is $L$$(M)$ recursively enumerable?
$\mathbf{1 0}$	yes		Is $L$$(M)$ recursive?

Start M with input w and execute 2019 steps. If w has been accepted then $w \in L(M)$, otherwise $w \notin L(M)$. Therefore, $L(M)$ and $\overline{L(M)}$ are both recursively enumerable.

| $\mathbf{1 1}$ | | no \quad Let L be a recursively enumerable language. Can it be concluded that |
| :--- | :--- | :--- | :--- | $L(M) \cap L$ is recursive?

Intersection of recursive and recursively enumerable languages is recursively enumerable but not necessarily recursive.

| $\mathbf{1 2}$ | yes \quad Let L be a recursively enumerable language. Can it be concluded that \bar{L} is |
| :--- | :--- | :--- | recursive, provided that \bar{L} is recursively enumerable?

If a language L and its complement \bar{L} are both recursively enumerable, then by Theoem 8 (Skriptum) L is recursive.

13	yes	
$\mathbf{1 4}$		no
$\mathbf{1 5}$	yes	

Does there exist a Turing-computable function that is not LOOPcomputable?
Is every total WHILE-computable function also LOOP-computable?
Let f be a LOOP-computable function and $g:\{\sharp\}^{*} \rightarrow\{\sharp\}^{*}$ be defined by $g\left(\sharp^{n}\right)=\sharp^{f(n)}$ for all $n \in \mathbb{N}$. Is g Turing-computable?

Part 3 Pumping2019
Let

$$
\begin{aligned}
& L_{1}=\left\{a^{m} b^{n} \mid m, n \in \mathbb{N}, m \leq n\right\}, \\
& L_{2}=\left\{a^{n} b^{n} \mid n \in \mathbb{N}, n<2019\right\} .
\end{aligned}
$$

$\mathbf{1 6}$		no
$\mathbf{1 7}$	yes	

Is there a regular expression r such that $L(r)=L_{1}$?
Is there a deterministic finite state machine M such that $L(M)=\overline{L_{2}}:=$ $\{a, b\}^{*} \backslash L_{2}$?
L_{2} is regular, i.e., its complement $\overline{L_{2}}$ is also regular.

$\mathbf{1 8}$	yes	
$\mathbf{1 9}$	yes	
$\mathbf{2 0}$	yes	

Is there an enumerator Turing machine G such that $\operatorname{Gen}(G)=L_{1}$?
Is there a Turing machine M such that $L(M)=L_{1} \cup L_{2}$?
Is there a deterministic finite state machine D such that $L(D)=L_{1} \cap L_{2}$?
The language $L_{1} \cap L_{2}$ is finite and thus regular.

Part 4 WhileLoop2019
Let a function $f: \mathbb{N}^{3} \rightarrow \mathbb{N}$ be defined by

$$
f(x, y, z):= \begin{cases}y & \text { if } x=y \\ z & \text { if } x<y \\ 0 & \text { otherwise }\end{cases}
$$

Let f^{\prime} be defined like f, but with the exception that f^{\prime} is undefined if one of the arguments is equal to 2019.

$\mathbf{2 1}$	yes	
$\mathbf{2 2}$		no
$\mathbf{2 3}$	yes	

Is f a LOOP computable function?
Is f^{\prime} a LOOP computable function?
Is f^{\prime} a WHILE computable function?

Part 5 Open2019
((2 points))
Let $N=\left(Q, \Sigma, \delta, q_{0}, F\right)$ be a nondeterministic finite state machine with $Q=$ $\left\{q_{0}, q_{1}, q_{2}, q_{3}\right\}, \Sigma=\{a, b\}, S=\left\{q_{0}\right\}, F=\left\{q_{0}, q_{3}\right\}$, and transition function δ as given below.

1. Let X_{i} denote the regular expression for the language accepted by N when starting in state q_{i}.
Write down an equation system for X_{0}, \ldots, X_{3}.
2. Give a regular expression r such that $L(r)=L(N)$ (you may apply Arden's Lemma to the result of 1).

$$
\begin{aligned}
X_{0} & =b X_{1}+(a+b) X_{2}+\varepsilon \\
X_{1} & =a X_{2} \\
X_{2} & =b X_{3} \\
X_{3} & =b X_{1}+\varepsilon \\
r & =((a+b)+b a)(b b a)^{*} b+\varepsilon
\end{aligned}
$$

or alternatively:

$$
r=((a+b)+b a) b(b a b)^{*}+\varepsilon
$$

