Gruppe	Popov (8:30)	Popov (9:15)	Popov (10:15)	${ m Hemmecke}$	(10:15)	Hem	mecke (11:00)	
$_{ m Name}$				Matrikel			SKZ	

Klausur 1

Berechenbarkeit und Komplexität

22. November 2019

Part 1 | NFSM2019

Let N be the nondeterministic finite state machine

$$(\{q_0, q_1, q_2, q_3, q_4, q_5, q_6, q_7\}, \{0, 1\}, \nu, \{q_0\}, \{q_1, q_3, q_5, q_7\}),$$

whose transition function ν is given below.

L(N) is regular and so is its complement.

5 yes $Is \ \overline{L(N)} \ recursively \ enumerable?$ $L(N) \ is \ regular. \ Hence, \ \overline{L(N)} \ is \ regular, \ and \ thus \ also \ recursively \ enumerable.$

Is there a deterministic finite state machine M with less than 2019 states such that L(M) = L(N)?

According to the subset construction, there must be a DFSM with at most $2^8 = 256$ states.

Is there an enumerator Turing machine G such that Gen(G) = L(N)?

Does there exists a deterministic finite state machine D such that $L(D) = L(N) \circ \overline{L(N)}$?

L(N) and $\overline{L(N)}$ are both regular. Concatenation of two regular languages gives a regular language.

Part 2 Computable2019

yes

yes

yes

Let M be a Turing machine such that whenever M accepts a word, it does so in no more than 2019 steps.

9 yes 10 yes	Is $L(M)$ recursively enumerable? Is $L(M)$ recursive?
	Start M with input w and execute 2019 steps. If w has been accepted then $w \in L(M)$, otherwise $w \notin L(M)$. Therefore, $L(M)$ and $\overline{L(M)}$ are both recursively enumerable.
11 no	Let L be a recursively enumerable language. Can it be concluded that $L(M) \cap L$ is recursive?
	Intersection of recursive and recursively enumerable languages is recursively enumerable but not necessarily recursive.
12 yes	Let L be a recursively enumerable language. Can it be concluded that \overline{L} is recursive, provided that \overline{L} is recursively enumerable?
	If a language L and its complement \overline{L} are both recursively enumerable, then by Theoem 8 (Skriptum) L is recursive.
13 yes	$Does\ there\ exist\ a\ Turing-computable\ function\ that\ is\ not\ LOOP-computable?$
14 no	$Is\ every\ total\ WHILE-computable\ function\ also\ LOOP-computable?$
15 yes	Let f be a LOOP-computable function and $g: \{\sharp\}^* \to \{\sharp\}^*$ be defined by $g(\sharp^n) = \sharp^{f(n)}$ for all $n \in \mathbb{N}$. Is g Turing-computable?
Pa Let	t Pumping2019

$$L_1 = \{ a^m b^n \mid m, n \in \mathbb{N}, m \le n \},$$

$$L_2 = \{ a^n b^n \mid n \in \mathbb{N}, n < 2019 \}.$$

10	3	no	Is there a regular expression r such that $L(r) = L_1$?
1	7 yes		Is there a deterministic finite state machine M such that $L(M)=\overline{L_2}:=\{a,b\}^*\setminus L_2$?

 L_2 is regular, i.e., its complement $\overline{L_2}$ is also regular.

18 yes	Is there an enumerator Turing machine G such that $Gen(G) = L_1$?
19 yes	Is there a Turing machine M such that $L(M)=L_1\cup L_2$?
20 yes	Is there a deterministic finite state machine D such that $L(D) = L_1 \cap L_2$?

The language $L_1 \cap L_2$ is finite and thus regular.

Part 4 WhileLoop2019

Let a function $f: \mathbb{N}^3 \to \mathbb{N}$ be defined by

$$f(x, y, z) := \begin{cases} y & \text{if } x = y, \\ z & \text{if } x < y, \\ 0 & \text{otherwise.} \end{cases}$$

Let f' be defined like f, but with the exception that f' is undefined if one of the arguments is equal to 2019.

21 yes	${\it Is} f a LOOP computable function?$
22 no	$Is \ f' \ a \ LOOP \ computable \ function?$
23 yes	${\it Is} f' a WHILE computable function?$

Part 5 | Open2019

((2 points))

Let $N=(Q,\Sigma,\delta,q_0,F)$ be a nondeterministic finite state machine with $Q=\{q_0,q_1,q_2,q_3\},\ \Sigma=\{a,b\},\ S=\{q_0\},\ F=\{q_0,q_3\},\ and\ transition\ function\ \delta\ as\ given\ below.$

1. Let X_i denote the regular expression for the language accepted by N when starting in state q_i .

Write down an equation system for X_0, \ldots, X_3 .

2. Give a regular expression r such that L(r) = L(N) (you may apply Arden's Lemma to the result of 1).

$$X_0 = bX_1 + (a+b)X_2 + \varepsilon$$

$$X_1 = aX_2$$

$$X_2 = bX_3$$

$$X_3 = bX_1 + \varepsilon$$

$$r = ((a+b) + ba)(bba)^*b + \varepsilon$$

or alternatively:

$$r = ((a+b) + ba)b(bab)^* + \varepsilon$$