
BeKomp Problem Set 6 due date: 05/06 Dezember 2019

Problems Solved: 26 27 28 29 30

Name:

Matrikel-Nr.:

Problem 26. Let m be the function de�ned by

m(x, y) =

{
0 if x < y,

x− y otherwise.

Show that m is indeed a primitive recursive function by de�ning it explicitly
from the base functions, composition, and the primitive recursion scheme.
Note that according to De�nition 29 (lecture notes), in the composition scheme,
the gi have the same number of arguments as h. Similarly, in the primitive
recursion scheme, recursion is done on the �rst argument of h and the respective
f has one argument less while g has one argument more than h.
For your solution, you are not allowed to deviate from these formal requirements.
Hint: De�ne �rst a helper function �pred� that behaves likem(x, 1), but has only
one argument. Then note that for y > 0 we have m(x, y) = pred(m(x, y − 1)),
i.e, the recursion would happen in the second argument (which is not allowed
according to De�nition 29). However, one can easily exchange arguments by
means of the projection function.

Problem 27. Let q : N2 → N, (x, y) 7→ x · x (sic!) and u : N2 → N,

u(x, y) =

{
0 if x = y,

1 if x 6= y,

be given primitive recursive functions.
Let r : N2 → N be de�nied by

r(x) = (µp)(x) minimization

p(y, x) = u(q(y, x),proj22(y, x)) composition

Informally we have

r(x) = min
y
{y ∈ N |u(q(y, x), x)) = 0}

Similar to the treatise in the lecture notes, construct a while program that
computes r. For simplicity, you are allowed to write statements such as xk =
q(xi, xj) and xk = u(xi, xj) into your program. What does r(x) return? What
will your program compute if it is started with input x1 = 2?

Problem 28. Consider the following term rewriting system:

p(x, s(y))→ p(s(x), y) (1)

p(x, 0)→ x (2)

Berechenbarkeit und Komplexität, WS2019 1



BeKomp Problem Set 6 due date: 05/06 Dezember 2019

1. Show that
p(s(0), s(0))

∗→ s(s(0))

by a suitable reduction sequence. For each reduction step, underline the
subterm that you reduce, and indicate the reduction rule and the matching
substitution σ used explicitly.

2. Disprove that

p(p(s(0), s(0)), p(s(0), s(0)))
∗→ s(s(0)).

Problem 29. According to De�nition 32 of the lecture notes, there are no
natural numbers in Lambda calculus. However, natural numbers can be encoded
(known as Church encoding) as �Church numerals� (see below), i.e., as functions
n that map any function f to its n-fold application fn = f ◦ . . . ◦ f . Note that
we denote such a �natural number� representation via boldface symbols in order
to emphasize that these are lambda terms. In other words, we de�ne Church
numerals as follows. By letting �application� bind stronger than �abstraction�,
we avoid writing parentheses where appropriate.

0 = λf.λx.x

1 = λf.λx.fx

2 = λf.λx.f(fx)

3 = λf.λx.f(f(fx))

4 = λf.λx.f(f(f(fx)))

...

n = λf.λx. f(· · · (f︸ ︷︷ ︸
n-fold

x) · · · )

1. De�ne a lambda term add that represents addition of �Church numerals�.

2. Show the intermediate steps of a reduction from ((add 2) 1) to 3.

Hint: a bit of literature research may help.

Problem 30. Consider the grammar G = (N,Σ, P, S) where N = {S}, Σ =
{a, b, c, d}, P = {S → a, S → b, S → dScSd}.

(a) Is daacbd ∈ L(G)?

(b) Is dddacadcbdcbd ∈ L(G)?

(c) Does every element of L(G) contain an even number of occurrences of d?

(d) Is L(G) regular?

(e) Is L(G) recursive?

Justify your answers.

Berechenbarkeit und Komplexität, WS2019 2


