Specification and Verification of Algorithms from
Computational Logic
Bachelor Thesis Report

Johannes Griinberger

Johannes Kepler University, Linz, Austria
j.gruenberger@live.at

November 14, 2019

mailto:j.gruenberger@live.at

Overview

» Bachelor Thesis (Start in October 2019)

» Goal: Specify and Verify algorithms from computational logic
with the RISC Algorithm Language.

» Content of this presentation:

» RISC Algorithm Language

» Propositional Logic
» Goal: Syntax and Semantics
» Goal: Substitution
» Goal: Normal Forms
» Goal: SAT Solving

» First-Order Logic
» Goal: Syntax and Semantics
» Goal: Prenex Normal Form and Skolemnization

» Summary

RISC Algorithm Language (RISCAL)

RISCAL is a specification language and associated software
tool to ...

» Describe mathematical theories and algorithms
» Specify the behavior of algorithms:

» Preconditions and Postconditions
» Termination Measures
» Loop Invariants

» Verify this theories over finite domains

RISCAL I

I Algorithm Language (RISCAL)
e e Hop
Ep————— snayis
Ce®a *9»0 ver g
1 o SN DA e
2// Computing the greatest common divisor by the Euclidean Algorithm s Lz " Orbertal
3/ Execusion: ilent _ Inputs: Per Mille: ‘Branches:
N Fraeism: | s Thveaded Theadsi 1o isvbued serwrs =
6type nat = N[N]; B
ot g | gepzn) -

8pred divides(m:nat,n:nat) « 3p:nat. np = n;
s

10 fun ged(m:nat,n:nat) : nat
11 requiresnz 0 v n 2 0;

12= choose resultinat

13 divides(result,n) A divides(result,n) o

1 Sariet. dlvidés(r.n) A divides(r.n) > results

2 theoren gedo(a:nat) « 140 = gcd(n,0)
17 theoren gcd1 (a:nat,n:nat) = @ < 6'v n « 0 = ged(m,n
18theoren gudz(a:nat ninat) « 15 1 4 0 = gedien

ged(n,m;
ged(ain,n);

Zﬂurm gedp(minat,nznat): nat

wires n20 | o

52 Cotures resitt = gedinal;
i

o

“0;
3 imarian g(ﬂka o gt a0t b);
29 decreases a

3

31 ifa> b then
2 asaw

3 else
3 b= b

3
36 return if a = 6 then b else
B

39 fun gedf (m:nat,n:nat) : nat
40 requires msd'v ns0;
41 ensures result = ged(m,n);

doanialtie qcmm n
46 else gedf(n, nm)

p
48proc gedr(n:nat,nznat) : nat
49 requires msd v ns0;

51 decreases men
‘

15 postcondidon sometimes nox il
41 resulturiquely determined?
Verity specifcaton precondions
1 Doas operaton precondition holg?
Verity crrecenessof rsult.

s resulconmect
Verify tertion and recursion.

+ oes loop narantinally hod?
+ Doas loop invarantiniilly hod?
15 loop measure nonegatve?

s oopivariant preserved?
s foopivariantpreserved?
1 loopimariant reserved?

Verity mplemensaton preconiions
+ Does operation preconditon hod?

Does operaton precondiion hoig?

1 Doss operaton precondition hold?
oes operaton precondiion ho?

4/41

Goal: Syntax and Semantics of Propositional Logic

The goal is a RISCAL specification containing:

» Data types Formula (recursive) and Valuation

> A predicate satisfies denoting whether a particular valuation
satisfies a formula.

» Predicates for derived notions valid, satisfiable, logically
equivalent, . ..

» Theorems stating the connection between those predicates

Propositional Logic

The logic of propositions:

» A proposition must be either True or False in a particular
interpretation.
» Many applications in mathematics and computer science:

» Mathematical Proof Theory
» Foundation for First- and Higher-Order Logic

» The foundation for Formal Methods and Automated Theorem
Proving

Syntax of Propositonal Formulas

Truth Constants: {T, '}
Atoms: a € V, for a finite set of variables V.
Negations: —, for propositional formula ¢

Logical Connectives: ¢ * 1), for propositional formulas ¢, 1,
x € {V,\,=, &}
» Parenthesis: (), for propositional formula ¢

Semantics of Logical Connectives

B-
Bo:=|T]| F
F| T
B | T | F
Br=[T [T[F]
F |F|F
B |T|F
Bo=| T |T|F
F |T|T

B\/Z

===

B@:

| =] =

Semantics of Propositonal Formulas

» A valuation v maps to every atom a truth value.

v:A— {T,F}

» The meaning (), maps to every formula ¢ a truth value
under the valuation v:

(T)y =T
(F), =F
(a)y, = v(a), for atom a
(me)v = B-({¢)v)
(px)y = Bu({@)vs (¥)), for x € {A,V, =, &}

» A valuation v satisfies a formula ¢ iff (¢), =T

Satisfiability, Validity of Propositional Formulas

A propositional formula ¢ is . ..

> ... satisfiable iff some valuation satisfies ¢

» . ..valid iff all valuations satisfy ¢

» ... failable iff some valuation does not satisfy ¢
>

... unsatisfiable iff no valuation satisfies ¢

Theorem: A formula ¢ is valid iff =y is unsatisfiable.

Logical Consequence, Logical Equivalence

A propositional formula ¢ is a logical consequence (I' =) of a
set of formulas I iff all valuations v that satisfy all v € I also
satisfy ¢.

Two propositional formulas ¢, ¢ are logically equivalent (¢ = v)
iff they have the same truth value in every valuation. This means,
for every valuation v, (¢), = (¢), holds.

(p=v)iff p =1 and ¥ = .

Syntax of Propositional Formulas in RISCAL

// the number of atoms
val N: N; // e.g. 3;

// the recursion height
val H: N;

// the raw types and the variously constrained subtypes
type Variable = Z[1,N];

rectype (H) Formula =
T I F |
VAR (Variable) | NOT(Formula) |
AND (Formula ,Formula) | OR(Formula,Formula) |
IMPLIES (Formula ,Formula) | IFF(Formula,Formula);

Semantics of Propositional Formulas in RISCAL

type LiteralBase = Z[-N,N];
type Literal = LiteralBase with value # 0;
type Valuation = Set[Literal]

with |value|=N A (Vl€value. —(-1l€value));

pred satisfies(V:Valuation, f:Formula)
decreases height (f);
< match f with
{
T -> true;
F -> false;
VAR (v:Variable) -> v € V;
NOT(f1:Formula) -> —satisfies(V,f1);
AND (f1:Formula, f2:Formula) ->
satisfies(V,f1) A satisfies(V,f2);
OR(f1:Formula, f2:Formula) ->
satisfies(V,f1) V satisfies(V,f2);
IMPLIES(f1:Formula, f2:Formula) ->
satisfies(V,f1) = satisfies(V,f2);
IFF(f1:Formula, f2:Formula) ->
satisfies(V,fl1) < satisfies(V,f2);
};

pred satisfiable(f:Formula)
& (3JV:Valuation. satisfies(V,f));

Goal: Substitution

Goal: A RISCAL function substituting every occurrence of an atom
in a formula with another formula.

Example:
Original formula: (AAB)V (AA C)
Substituting A with (=D = C) leads to new formula

(D= C)AB)V((-D=C)AC)

Theorem: A tautology stays a tautology after substitution
» Specification of this theorem in RISCAL

Goal: Normal Forms

The goal is a RISCAL specification containing;:

» Non-recursive data types for CNF, DNF.
> A Predicate satisfies for the non-recursive data types.
» Predicates for derived notions valid, satisfiable, logically

equivalent, . ..
» Functions computing CNF, DNF from recursive representation.

» Verification of the logical equivalence of the resulting and the
original formula.

Negation Normal Form (NNF) - Definition

A propositional formula is in Negation Normal Form (NNF) iff it
does not contain the connectives <, = and negations are only
applied on atomic values.

Definition: A literal is either an atom or the negation of an atom.

A formula in NNF can be expressed by truth values, literals,
connectives V, A and parenthesis.

Negation Normal Form (NNF) - Computation

Apply transformations:
» Eliminate < and =

peqg=(p=q) AN(g=p)
p=q=-pVgqg

» Push negations inside (De Morgan'’s laws)

-(pANg)=-pV—q
—(pVq)=-pA—q

> Negation of negation

Conjunctive Normal Form (CNF)

A propositional formula is in conjunctive normal form (CNF) iff
it is a conjunction of disjunctions of literals.

This means, the formula is in the form
GANGA---NC,
and for i = 1..n, C; is a disjunction of literals, which means
aj1VajpV---Vain

with literals a; 4, k = 1..m

Disjunctive Normal Form (DNF)

A propositional formula is in disjunctive normal form (DNF) iff it
is a disjunction of conjunctions of literals.

This means, the formula is in the form
DivDyVv---VvD,
and for i = 1..n, D; is a conjunction of literals, which means
ajtNaj2 N Naim

with literals a; 4, k = 1..m

Computation of DNF / CNF

CNF/DNF can be computed by systematic application of
transformations.

Goal: SAT Solving

The goal is a RISCAL specification containing:

» Recursive function implementing the DPLL algorithm.

> |terative procedure implementing DPLL.

» Verification of correctness of both (pre-/postconditions,
termination measures, invariants)

There already exist basic implementations of DPLL in both
recursive and iterative way. (RISCAL Samples)

Goal: Extend these to “real” algorithm with some optimizations.

Boolean satisfiability problem (SAT)

» Problem: Is a propositional formula satisfiable?

» Common problem in artificial intelligence, automated theorem
proving, ...

» For n variables there exist 2" different valuations.

Is there a better approach than Brute Force?

DPLL

vVvyyvyVvyy

Deciding satisfiability for formulas in CNF

1960: first algorithm by Davis and Putnam

1962: enhanced algorithm by Davis, Logemann and Loveland
Foundation for modern SAT-solvers.

Idea: apply rules to eliminate literals step-by-step

> If we obtain an empty set of clauses, the formula is
satisfiable.
> If we obtain some empty clause, the formula is unsatisfiable.

Input: ¢ .. a propositional formula in CNF
Output: T if ¢ is satisfiable, F otherwise

One Literal Rule

Given a formula in CNF
GANGAN---NC,

If there is a C; that contains only a single literal a we will
> eliminate all clauses containing a
> remove —a from every clause

without affecting the satisfiability of the formula.

Pure Literal Rule

Given a formula in CNF
GANGAN---NC,

If there is a literal a that does occur in some C; but —a does not
occur in any C; we will

» eliminate all clauses containing a
without affecting the satisfiability of the formula.

Splitting Rule

Given a formula in CNF
GAGA---NC,

If there is a literal a that does occur in some C; and also —a does
occur in some C; we will

» split the problem in two subproblems
GAN---NCyANa

CGiA--ACyA—a

the original formula is satisfiable iff one of the two resulting
formulas is satisfiable

Goal: Syntax and Semantics of First-Order Logic

The goal is a RISCAL specification containing:

>

>

Data types Term, Formula (both recursive), Interpretation and
Valuation

Functions computing the meaning of terms and formulas in
particular interpretation and valuation.

A predicate satisfies that denotes whether a given
interpretation satisfies a formula.

Predicates for derived notions valid, satisfiable, logically
equivalent, equisatisfiable . ..

Theorems stating the connection between those predicates

A function computing the free variables of a formula.

First-Order Logic

Propositional Logic is not always enough:

How to express the following in a propositional formula?
For every y there exists an x such that x is greater than y.

We will introduce:

» A domain of terms for variables

» Functions to map terms to other terms

» Predicates to assign truth values to terms
» Quantifiers

Syntax of First-Order Logic

> Terms t
» variables v
P> constants c
» functions f(t,...,t,)
map n terms to another term
» Formulas ¢

» truth constants T,F
> predicates p(ty,...,t,)
map n terms to a truth value
> connectives —p, p1 A 2,01 V Q2,01 = P2, 01 & 2
quantified formulas 3v.p,Vv.p
> parentheses ()

v

Free Variables

» a variable that occurs after a quantifier is called bound
(Fv.p or Vv.p)

» a3 variable is free if it is not bound

freevars(v) = {v}
freevars(f(ti,...,tn)) = freevars(t;) U - -- U freevars(ty)

freevars(T

freevars(IF

0
0
fr U--- U freevars(ty)

freevars(p(ti, ..., tn) reevars(t;

(t1)
()
freevars(p1) U freevars(y2)
(e)\{v}

(L)\{v}

freevars(p1 * 2

)

)

)

freevars(—y) = freevars(y

) =

freevars(v.p) = freevars(p
) =

freevars(Yv.p) = freevars(p

Semantics of First-Order Logic |

To define semantics of first-order formulas we introduce:

» A domain of terms D

» avaluationv:V — D
» maps to every variable a term in D
> an interpretation / consisting of

» A mapping ¢ for every constant ¢ to an element in D.
» A mapping f; for each function f, f; : D" — D.
» A mapping f; for each predicate p, p; : D" — {T,F}

Semantics of First-Order Logic |l

Meaning of terms:

(t);,, maps to every term t its meaning (in D) for a particular
interpretation / and valuation v

(X1 =v(x)
(ehiv=c
<f(t1, ey tn)>l7v = f/(<t1>/7v, ceey <tn>l,v)

Semantics of First-Order Logic Il

Meaning of formulas:
(@)1, maps to every first-order formula ¢ its meaning for a
particular interpretation / and valuation v

F, otherwise

<T>I,v =T
<F>I,v =F
(p(trs s ta)) iy = Pr({t) 1vs -5 (ta)iv)
<_“P>I,v = Bﬂ(<90>l,V)
(p1 % 02)1v = Be({p1) 1,05 (P2)1v)s for x € {A,V, =<}
T, if visisdl = T for some d € D
<E|X-§0>I,v _ { <90>I,[—d]
F, otherwise
T, if vixsd] = T for all d € D
<VX-§0>I,V _ { <90>I, [x—d]

Validity, Satisfiability of First-Order Formulas

A first-order formula is ...

» valid iff it holds for all interpretations and valuations.

> satisfied by an interpretation iff it holds for all valuations
under this interpretation.

> satisfiable iff there exists some interpretation that satisfies the
formula.

» unsatisfiable iff it is not satisfied by any interpretation.

A first-order formula ¢ is valid iff = is unsatisfiable.

First-Order Logic - Terminology

Two first-order formulas ¢, 1) are logically equivalent iff for all
interpretations / and valuations v

holds.

Two first-order formulas ¢, 1) are equisatisfiable iff ¢ is satisfiable
when 9 is satisfiable and vice versa.

Logically equivalent formulas are also equisatisfiable.

But there are equisatisfiable formulas which are not logically
equivalent!

Goal: Prenex Normal Form and Skolemnization

The goal is a RISCAL specification containing:

> A recursive data type for formulas in Prenex Normal Form.

» Predicates describing the syntax of this new data type.
(satisties, satisfiable, logically equivalent, equi-satisfiable)

» A Function transforming a formula to Prenex Normal Form.

» Verification of the logical equivalence

» Predicates denoting whether a formula is in Prenex Normal
Form / Skolem Normal Form

» A function implementing Skolemization.

» Verification of the equi-satisfiability.

Prenex Normal Form (PNF)

A first-order formula is in Prenex Normal Form (PNF) iff there is
no quantifier appearing as a subformula of a connective.

Example:

> Vx.3y.(p(x,y) Aa(y))
» prenex normal form.

> 3x.p(x) VVy.q(y)

» not in prenex normal form.

For every first-order formula there is a logically equivalent formula
in PNF.

Computation of Prenex Normal Form

> eliminate &, =
» push negations inside

» De Morgan's laws
» Negation on quantifiers

—Vx.q = Ix.—q —dx.q = Vx.—q

» pull out quantifiers:

» ensure bounded variables have unique names
(no free or other bound variables with the same name)
» apply transformations

(3x.9) Ap=3Ix.(gAPp) (3x.q) Vp=3x.(qVp)

(Vx.9) Ap=Vx.(g A p) (Vx.q) vV p=Vx.(qV p)

Skolem Normal Form

A first-order formula is in Skolem Normal Form iff it contains no
existential quantifiers and also is in Prenex Normal Form.

For every first-order formula there is a formula in Skolem Normal
Form that is equisatisfiable to the original one.

Skolemization

Input: first-order formula

Output: formula in Skolem Normal Form equisatisfiable to the
input

The following two statements are equivalent:

1. for all x € D there exists y € D such that P(x,y) holds.

2. there exists a function f : D — D such that for all
x € D, P(x, f(x)) holds.

Idea: Introduce new functions to eliminate existential quantifiers.

Example:
YuavWw3ax.P(u, v, w, x)

~

Yuvw.P(u, f(u), w, g(u, w))

Summary: Goals of the thesis

» Goal: RISCAL specifications for Computational Logic
> (recursive) data types, predicates, theorems
» functions, procedures
» pre- and postconditions, invariants and termination measures
» Propositional Logic
» Syntax and Semantics
» Substitution
» Normal Forms
» DPLL with optimizations
» Application: Digital Circuits
» First-Order Logic

» Syntax and Semantics
» Syntactic Operations

» Prenex Normal Form

» Skolemization

