
1/41

Specification and Verification of Algorithms from
Computational Logic
Bachelor Thesis Report

Johannes Grünberger

Johannes Kepler University, Linz, Austria
j.gruenberger@live.at

November 14, 2019

mailto:j.gruenberger@live.at

2/41

Overview

I Bachelor Thesis (Start in October 2019)
I Goal: Specify and Verify algorithms from computational logic

with the RISC Algorithm Language.

I Content of this presentation:
I RISC Algorithm Language
I Propositional Logic

I Goal: Syntax and Semantics
I Goal: Substitution
I Goal: Normal Forms
I Goal: SAT Solving

I First-Order Logic
I Goal: Syntax and Semantics
I Goal: Prenex Normal Form and Skolemnization

I Summary

3/41

RISC Algorithm Language (RISCAL)

RISCAL is a specification language and associated software
tool to . . .

I Describe mathematical theories and algorithms
I Specify the behavior of algorithms:

I Preconditions and Postconditions
I Termination Measures
I Loop Invariants

I Verify this theories over finite domains

4/41

RISCAL II

5/41

Goal: Syntax and Semantics of Propositional Logic

The goal is a RISCAL specification containing:

I Data types Formula (recursive) and Valuation
I A predicate satisfies denoting whether a particular valuation

satisfies a formula.
I Predicates for derived notions valid, satisfiable, logically

equivalent, . . .
I Theorems stating the connection between those predicates

6/41

Propositional Logic

The logic of propositions:

I A proposition must be either True or False in a particular
interpretation.

I Many applications in mathematics and computer science:
I Mathematical Proof Theory
I Foundation for First- and Higher-Order Logic

I The foundation for Formal Methods and Automated Theorem
Proving

7/41

Syntax of Propositonal Formulas

I Truth Constants: {T, F}
I Atoms: a ∈ V, for a finite set of variables V.
I Negations: ¬ϕ, for propositional formula ϕ
I Logical Connectives: ϕ ∗ ψ, for propositional formulas ϕ,ψ,
∗ ∈ {∨,∧,⇒,⇔}

I Parenthesis: (ϕ), for propositional formula ϕ

8/41

Semantics of Logical Connectives

B¬ :=

B¬
T F
F T

B∧ :=

B∧ T F
T T F
F F F

B⇒ :=

B⇒ T F
T T F
F T T

B∨ :=

B∨ T F
T T T
F T F

B⇔ :=

B⇔ T F
T T F
F F T

9/41

Semantics of Propositonal Formulas

I A valuation v maps to every atom a truth value.

v : A → {T,F}

I The meaning 〈ϕ〉v maps to every formula ϕ a truth value
under the valuation v :

〈T〉v = T
〈F〉v = F
〈a〉v = v(a), for atom a

〈¬ϕ〉v = B¬(〈ϕ〉v)

〈ϕ ∗ ψ〉v = B∗(〈ϕ〉v , 〈ψ〉v), for ∗ ∈ {∧,∨,⇒,⇔}

I A valuation v satisfies a formula ϕ iff 〈ϕ〉v = T

10/41

Satisfiability, Validity of Propositional Formulas

A propositional formula ϕ is . . .

I . . . satisfiable iff some valuation satisfies ϕ
I . . . valid iff all valuations satisfy ϕ
I . . . failable iff some valuation does not satisfy ϕ
I . . .unsatisfiable iff no valuation satisfies ϕ

Theorem: A formula ϕ is valid iff ¬ϕ is unsatisfiable.

11/41

Logical Consequence, Logical Equivalence

A propositional formula ϕ is a logical consequence (Γ |= ϕ) of a
set of formulas Γ iff all valuations v that satisfy all γ ∈ Γ also
satisfy ϕ.

Two propositional formulas ϕ, ψ are logically equivalent (ϕ ≡ ψ)
iff they have the same truth value in every valuation. This means,
for every valuation v , 〈ϕ〉v = 〈ψ〉v holds.

(ϕ ≡ ψ) iff ϕ |= ψ and ψ |= ϕ.

12/41

Syntax of Propositional Formulas in RISCAL

// the number of atoms
val N: N; // e.g. 3;

// the recursion height
val H: N;

// the raw types and the variously constrained subtypes
type Variable = Z[1,N];

rectype(H) Formula =
T | F |
VAR(Variable) | NOT(Formula) |
AND(Formula ,Formula) | OR(Formula ,Formula) |
IMPLIES(Formula ,Formula) | IFF(Formula ,Formula);

13/41

Semantics of Propositional Formulas in RISCAL
type LiteralBase = Z[-N,N];
type Literal = LiteralBase with value 6= 0;
type Valuation = Set[Literal]

with |value |=N ∧ (∀l∈value. ¬(-l∈value));

pred satisfies(V:Valuation , f:Formula)
decreases height(f);
⇔ match f with

{
T -> true;
F -> false;
VAR(v:Variable) -> v ∈ V;
NOT(f1:Formula) -> ¬satisfies(V,f1);
AND(f1:Formula , f2:Formula) ->

satisfies(V,f1) ∧ satisfies(V,f2);
OR(f1:Formula , f2:Formula) ->

satisfies(V,f1) ∨ satisfies(V,f2);
IMPLIES(f1:Formula , f2:Formula) ->

satisfies(V,f1) ⇒ satisfies(V,f2);
IFF(f1:Formula , f2:Formula) ->

satisfies(V,f1) ⇔ satisfies(V,f2);
};

pred satisfiable(f:Formula)
⇔ (∃V:Valuation. satisfies(V,f));

14/41

Goal: Substitution

Goal: A RISCAL function substituting every occurrence of an atom
in a formula with another formula.

Example:
Original formula: (A ∧ B) ∨ (A ∧ C)
Substituting A with (¬D ⇒ C) leads to new formula

((¬D ⇒ C) ∧ B) ∨ ((¬D ⇒ C) ∧ C)

Theorem: A tautology stays a tautology after substitution
I Specification of this theorem in RISCAL

15/41

Goal: Normal Forms

The goal is a RISCAL specification containing:

I Non-recursive data types for CNF, DNF.
I A Predicate satisfies for the non-recursive data types.
I Predicates for derived notions valid, satisfiable, logically

equivalent, . . .
I Functions computing CNF, DNF from recursive representation.

I Verification of the logical equivalence of the resulting and the
original formula.

16/41

Negation Normal Form (NNF) - Definition

A propositional formula is in Negation Normal Form (NNF) iff it
does not contain the connectives ⇔, ⇒ and negations are only
applied on atomic values.

Definition: A literal is either an atom or the negation of an atom.

A formula in NNF can be expressed by truth values, literals,
connectives ∨, ∧ and parenthesis.

17/41

Negation Normal Form (NNF) - Computation

Apply transformations:
I Eliminate ⇔ and ⇒

p ⇔ q ≡ (p ⇒ q) ∧ (q ⇒ p)

p ⇒ q ≡ ¬p ∨ q

I Push negations inside (De Morgan’s laws)

¬(p ∧ q) ≡ ¬p ∨ ¬q

¬(p ∨ q) ≡ ¬p ∧ ¬q

I Negation of negation

¬¬p ≡ p

18/41

Conjunctive Normal Form (CNF)

A propositional formula is in conjunctive normal form (CNF) iff
it is a conjunction of disjunctions of literals.

This means, the formula is in the form

C1 ∧ C2 ∧ · · · ∧ Cn

and for i = 1..n,Ci is a disjunction of literals, which means

ai ,1 ∨ ai ,2 ∨ · · · ∨ ai ,m

with literals ai ,k , k = 1..m

19/41

Disjunctive Normal Form (DNF)

A propositional formula is in disjunctive normal form (DNF) iff it
is a disjunction of conjunctions of literals.

This means, the formula is in the form

D1 ∨ D2 ∨ · · · ∨ Dn

and for i = 1..n,Di is a conjunction of literals, which means

ai ,1 ∧ ai ,2 ∧ · · · ∧ ai ,m

with literals ai ,k , k = 1..m

20/41

Computation of DNF / CNF

CNF/DNF can be computed by systematic application of
transformations.

p ∨ (q ∧ r) ≡ (p ∨ q) ∧ (p ∨ r)

p ∧ (q ∨ r) ≡ (p ∧ q) ∨ (p ∧ r)

21/41

Goal: SAT Solving

The goal is a RISCAL specification containing:

I Recursive function implementing the DPLL algorithm.
I Iterative procedure implementing DPLL.
I Verification of correctness of both (pre-/postconditions,

termination measures, invariants)

There already exist basic implementations of DPLL in both
recursive and iterative way. (RISCAL Samples)

Goal: Extend these to “real” algorithm with some optimizations.

22/41

Boolean satisfiability problem (SAT)

I Problem: Is a propositional formula satisfiable?
I Common problem in artificial intelligence, automated theorem

proving, . . .
I For n variables there exist 2n different valuations.

Is there a better approach than Brute Force?

23/41

DPLL

I Deciding satisfiability for formulas in CNF
I 1960: first algorithm by Davis and Putnam
I 1962: enhanced algorithm by Davis, Logemann and Loveland
I Foundation for modern SAT-solvers.
I Idea: apply rules to eliminate literals step-by-step

I If we obtain an empty set of clauses, the formula is
satisfiable.

I If we obtain some empty clause, the formula is unsatisfiable.

I Input: ϕ .. a propositional formula in CNF
I Output: T if ϕ is satisfiable, F otherwise

24/41

One Literal Rule

Given a formula in CNF

C1 ∧ C2 ∧ · · · ∧ Cn

If there is a Ci that contains only a single literal a we will
I eliminate all clauses containing a

I remove ¬a from every clause
without affecting the satisfiability of the formula.

25/41

Pure Literal Rule

Given a formula in CNF

C1 ∧ C2 ∧ · · · ∧ Cn

If there is a literal a that does occur in some Ci but ¬a does not
occur in any Cj we will
I eliminate all clauses containing a

without affecting the satisfiability of the formula.

26/41

Splitting Rule

Given a formula in CNF

C1 ∧ C2 ∧ · · · ∧ Cn

If there is a literal a that does occur in some Ci and also ¬a does
occur in some Cj we will
I split the problem in two subproblems

C1 ∧ · · · ∧ Cn ∧ a

C1 ∧ · · · ∧ Cn ∧ ¬a

the original formula is satisfiable iff one of the two resulting
formulas is satisfiable

27/41

Goal: Syntax and Semantics of First-Order Logic

The goal is a RISCAL specification containing:

I Data types Term, Formula (both recursive), Interpretation and
Valuation

I Functions computing the meaning of terms and formulas in
particular interpretation and valuation.

I A predicate satisfies that denotes whether a given
interpretation satisfies a formula.

I Predicates for derived notions valid, satisfiable, logically
equivalent, equisatisfiable . . .

I Theorems stating the connection between those predicates
I A function computing the free variables of a formula.

28/41

First-Order Logic

Propositional Logic is not always enough:

How to express the following in a propositional formula?
For every y there exists an x such that x is greater than y .

We will introduce:

I A domain of terms for variables
I Functions to map terms to other terms
I Predicates to assign truth values to terms
I Quantifiers

29/41

Syntax of First-Order Logic

I Terms t
I variables v
I constants c
I functions f (t1, . . . , tn)

map n terms to another term
I Formulas ϕ

I truth constants T,F
I predicates p(t1, . . . , tn)

map n terms to a truth value
I connectives ¬ϕ,ϕ1 ∧ ϕ2, ϕ1 ∨ ϕ2, ϕ1 ⇒ ϕ2, ϕ1 ⇔ ϕ2
I quantified formulas ∃v .ϕ,∀v .ϕ
I parentheses (ϕ)

30/41

Free Variables
I a variable that occurs after a quantifier is called bound

(∃v .ϕ or ∀v .ϕ)
I a variable is free if it is not bound

freevars(v) = {v}
freevars(f (t1, . . . , tn)) = freevars(t1) ∪ · · · ∪ freevars(tn)

freevars(T) = ∅
freevars(F) = ∅

freevars(p(t1, . . . , tn)) = freevars(t1) ∪ · · · ∪ freevars(tn)

freevars(¬ϕ) = freevars(ϕ)

freevars(ϕ1 ∗ ϕ2) = freevars(ϕ1) ∪ freevars(ϕ2)

freevars(∃v .ϕ) = freevars(ϕ)\{v}
freevars(∀v .ϕ) = freevars(ϕ)\{v}

31/41

Semantics of First-Order Logic I

To define semantics of first-order formulas we introduce:
I A domain of terms D

I a valuation v : V → D
I maps to every variable a term in D

I an interpretation I consisting of
I A mapping cI for every constant c to an element in D.
I A mapping fI for each function f , fI : Dn → D.
I A mapping fI for each predicate p, pI : Dn → {T,F}

32/41

Semantics of First-Order Logic II

Meaning of terms:
〈t〉I ,v maps to every term t its meaning (in D) for a particular
interpretation I and valuation v

〈x〉I ,v = v(x)

〈c〉I ,v = cI

〈f (t1, . . . , tn)〉I ,v = fI (〈t1〉I ,v , . . . , 〈tn〉I ,v)

33/41

Semantics of First-Order Logic III
Meaning of formulas:
〈ϕ〉I ,v maps to every first-order formula ϕ its meaning for a
particular interpretation I and valuation v

〈T〉I ,v = T
〈F〉I ,v = F

〈p(t1, . . . , tn)〉I ,v = pI (〈t1〉I ,v , . . . , 〈tn〉I ,v)

〈¬ϕ〉I ,v = B¬(〈ϕ〉I ,v)

〈ϕ1 ∗ ϕ2〉I ,v = B∗(〈ϕ1〉I ,v , 〈ϕ2〉I ,v), for ∗ ∈ {∧,∨,⇒⇔}

〈∃x .ϕ〉I ,v =

{
T, if 〈ϕ〉I ,v [x 7→d] = T for some d ∈ D

F, otherwise

〈∀x .ϕ〉I ,v =

{
T, if 〈ϕ〉I ,v [x 7→d] = T for all d ∈ D

F, otherwise

34/41

Validity, Satisfiability of First-Order Formulas

A first-order formula is ...

I valid iff it holds for all interpretations and valuations.
I satisfied by an interpretation iff it holds for all valuations

under this interpretation.
I satisfiable iff there exists some interpretation that satisfies the

formula.
I unsatisfiable iff it is not satisfied by any interpretation.

A first-order formula ϕ is valid iff ¬ϕ is unsatisfiable.

35/41

First-Order Logic - Terminology

Two first-order formulas ϕ,ψ are logically equivalent iff for all
interpretations I and valuations v

〈ϕ〉I ,v = 〈ψ〉I ,v

holds.

Two first-order formulas ϕ,ψ are equisatisfiable iff ϕ is satisfiable
when ψ is satisfiable and vice versa.

Logically equivalent formulas are also equisatisfiable.

But there are equisatisfiable formulas which are not logically
equivalent!

36/41

Goal: Prenex Normal Form and Skolemnization

The goal is a RISCAL specification containing:

I A recursive data type for formulas in Prenex Normal Form.
I Predicates describing the syntax of this new data type.

(satisfies, satisfiable, logically equivalent, equi-satisfiable)
I A Function transforming a formula to Prenex Normal Form.

I Verification of the logical equivalence

I Predicates denoting whether a formula is in Prenex Normal
Form / Skolem Normal Form

I A function implementing Skolemization.
I Verification of the equi-satisfiability.

37/41

Prenex Normal Form (PNF)

A first-order formula is in Prenex Normal Form (PNF) iff there is
no quantifier appearing as a subformula of a connective.

Example:
I ∀x .∃y .(p(x , y) ∧ q(y))

I prenex normal form.
I ∃x .p(x) ∨ ∀y .q(y)

I not in prenex normal form.

For every first-order formula there is a logically equivalent formula
in PNF.

38/41

Computation of Prenex Normal Form

I eliminate ⇔,⇒
I push negations inside

I De Morgan’s laws
I Negation on quantifiers

¬∀x .q ≡ ∃x .¬q ¬∃x .q ≡ ∀x .¬q

I pull out quantifiers:
I ensure bounded variables have unique names

(no free or other bound variables with the same name)
I apply transformations

(∃x .q) ∧ p ≡ ∃x .(q ∧ p) (∃x .q) ∨ p ≡ ∃x .(q ∨ p)

(∀x .q) ∧ p ≡ ∀x .(q ∧ p) (∀x .q) ∨ p ≡ ∀x .(q ∨ p)

39/41

Skolem Normal Form

A first-order formula is in Skolem Normal Form iff it contains no
existential quantifiers and also is in Prenex Normal Form.

For every first-order formula there is a formula in Skolem Normal
Form that is equisatisfiable to the original one.

40/41

Skolemization

Input: first-order formula
Output: formula in Skolem Normal Form equisatisfiable to the
input
The following two statements are equivalent:
1. for all x ∈ D there exists y ∈ D such that P(x , y) holds.
2. there exists a function f : D → D such that for all

x ∈ D,P(x , f (x)) holds.
Idea: Introduce new functions to eliminate existential quantifiers.

Example:
∀u∃v∀w∃x .P(u, v ,w , x)

∀u∀w .P(u, f (u),w , g(u,w))

41/41

Summary: Goals of the thesis

I Goal: RISCAL specifications for Computational Logic
I (recursive) data types, predicates, theorems
I functions, procedures
I pre- and postconditions, invariants and termination measures

I Propositional Logic
I Syntax and Semantics
I Substitution
I Normal Forms
I DPLL with optimizations
I Application: Digital Circuits

I First-Order Logic
I Syntax and Semantics
I Syntactic Operations
I Prenex Normal Form
I Skolemization

