Specification and Verification of Algorithms from Computational Logic Bachelor Thesis Report

Johannes Grünberger

Johannes Kepler University, Linz, Austria j.gruenberger@live.at

November 14, 2019

Overview

- Bachelor Thesis (Start in October 2019)
- Goal: Specify and Verify algorithms from computational logic with the RISC Algorithm Language.
- Content of this presentation:
- RISC Algorithm Language
- Propositional Logic
- Goal: Syntax and Semantics
- Goal: Substitution
- Goal: Normal Forms
- Goal: SAT Solving
- First-Order Logic
- Goal: Syntax and Semantics
- Goal: Prenex Normal Form and Skolemnization
- Summary

RISC Algorithm Language (RISCAL)

RISCAL is a specification language and associated software tool to ...

- Describe mathematical theories and algorithms
- Specify the behavior of algorithms:
- Preconditions and Postconditions
- Termination Measures
- Loop Invariants
- Verify this theories over finite domains

RISCAL II

Goal: Syntax and Semantics of Propositional Logic

The goal is a RISCAL specification containing:

- Data types Formula (recursive) and Valuation
- A predicate satisfies denoting whether a particular valuation satisfies a formula.
- Predicates for derived notions valid, satisfiable, logically equivalent, ...
- Theorems stating the connection between those predicates

Propositional Logic

The logic of propositions:

- A proposition must be either True or False in a particular interpretation.
- Many applications in mathematics and computer science:
- Mathematical Proof Theory
- Foundation for First- and Higher-Order Logic
- The foundation for Formal Methods and Automated Theorem Proving

Syntax of Propositonal Formulas

- Truth Constants: $\{\mathbb{T}, \mathbb{F}\}$
- Atoms: $a \in \mathcal{V}$, for a finite set of variables \mathcal{V}.
- Negations: $\neg \varphi$, for propositional formula φ
- Logical Connectives: $\varphi * \psi$, for propositional formulas φ, ψ, $* \in\{\vee, \wedge, \Rightarrow, \Leftrightarrow\}$
- Parenthesis: (φ), for propositional formula φ

Semantics of Logical Connectives

$\mathcal{B}_{\neg}:=$| | \mathcal{B}_{\neg} |
| :---: | :---: |
| \mathbb{T} | \mathbb{F} |
| \mathbb{F} | \mathbb{T} |

$\mathcal{B}_{\wedge}:=$| \mathcal{B}_{\wedge} | \mathbb{T} | \mathbb{F} |
| :---: | :---: | :---: |
| \mathbb{T} | \mathbb{T} | \mathbb{F} |
| \mathbb{F} | \mathbb{F} | \mathbb{F} |

$\mathcal{B}_{\vee}:=$| \mathcal{B}_{\vee} | \mathbb{T} | \mathbb{F} |
| :---: | :---: | :---: |
| \mathbb{T} | \mathbb{T} | \mathbb{T} |
| \mathbb{F} | \mathbb{T} | \mathbb{F} |

$$
\mathcal{B}_{\Rightarrow}:=\begin{array}{|c|c|c|}
\hline \mathcal{B}_{\Rightarrow} & \mathbb{T} & \mathbb{F} \\
\hline \mathbb{T} & \mathbb{T} & \mathbb{F} \\
\hline \mathbb{F} & \mathbb{T} & \mathbb{T} \\
\hline
\end{array}
$$

Semantics of Propositonal Formulas

- A valuation v maps to every atom a truth value.

$$
v: \mathcal{A} \rightarrow\{\mathbb{T}, \mathbb{F}\}
$$

- The meaning $\langle\varphi\rangle_{v}$ maps to every formula φ a truth value under the valuation v :

$$
\begin{aligned}
\langle\mathbb{T}\rangle_{v} & =\mathbb{T} \\
\langle\mathbb{F}\rangle_{v} & =\mathbb{F} \\
\langle a\rangle_{v} & =v(a), \text { for atom } a \\
\langle\neg \varphi\rangle_{v} & =\mathcal{B}_{\neg}\left(\langle\varphi\rangle_{v}\right) \\
\langle\varphi * \psi\rangle_{v} & =\mathcal{B}_{*}\left(\langle\varphi\rangle_{v},\langle\psi\rangle_{v}\right), \text { for } * \in\{\wedge, \vee, \Rightarrow, \Leftrightarrow\}
\end{aligned}
$$

- A valuation v satisfies a formula φ iff $\langle\varphi\rangle_{v}=\mathbb{T}$

Satisfiability, Validity of Propositional Formulas

A propositional formula φ is ...

- ...s satisfiable iff some valuation satisfies φ
- ... valid iff all valuations satisfy φ
- ... failable iff some valuation does not satisfy φ
-unsatisfiable iff no valuation satisfies φ

Theorem: A formula φ is valid iff $\neg \varphi$ is unsatisfiable.

Logical Consequence, Logical Equivalence

A propositional formula φ is a logical consequence $(\Gamma \models \varphi)$ of a set of formulas Γ iff all valuations v that satisfy all $\gamma \in \Gamma$ also satisfy φ.

Two propositional formulas φ, ψ are logically equivalent $(\varphi \equiv \psi)$ iff they have the same truth value in every valuation. This means, for every valuation $v,\langle\varphi\rangle_{v}=\langle\psi\rangle_{v}$ holds.
$(\varphi \equiv \psi)$ iff $\varphi \models \psi$ and $\psi \models \varphi$.

Syntax of Propositional Formulas in RISCAL

```
// the number of atoms
val N: N; // e.g. 3;
// the recursion height
val H: N;
// the raw types and the variously constrained subtypes
type Variable = Z[1,N];
rectype(H) Formula =
    T | F |
    VAR(Variable) | NOT(Formula) |
    AND(Formula,Formula) | OR(Formula,Formula) |
    IMPLIES(Formula,Formula) | IFF(Formula,Formula);
```


Semantics of Propositional Formulas in RISCAL

```
type LiteralBase = Z[-N,N];
type Literal = LiteralBase with value # 0;
type Valuation = Set[Literal]
    with |value|=N ^ ( }\foralll\invalue. \neg(-l\invalue))
pred satisfies(V:Valuation, f:Formula)
decreases height(f);
\Leftrightarrowmatch f with
    {
        T -> true;
        F -> false;
        VAR(v:Variable) -> v G V;
        NOT(f1:Formula) -> \negsatisfies(V,f1);
        AND(f1:Formula, f2:Formula) ->
        satisfies(V,f1) ^ satisfies(V,f2);
        OR(f1:Formula, f2:Formula) ->
        satisfies(V,f1) V satisfies(V,f2);
        IMPLIES(f1:Formula, f2:Formula) ->
        satisfies(V,f1) => satisfies(V,f2);
    IFF(f1:Formula, f2:Formula) ->
        satisfies(V,f1) \Leftrightarrow satisfies(V,f2);
};
pred satisfiable(f:Formula)
\Leftrightarrow(\existsV:Valuation. satisfies(V,f));
```


Goal: Substitution

Goal: A RISCAL function substituting every occurrence of an atom in a formula with another formula.

Example:
Original formula: $(A \wedge B) \vee(A \wedge C)$
Substituting A with $(\neg D \Rightarrow C)$ leads to new formula

$$
((\neg D \Rightarrow C) \wedge B) \vee((\neg D \Rightarrow C) \wedge C)
$$

Theorem: A tautology stays a tautology after substitution

- Specification of this theorem in RISCAL

Goal: Normal Forms

The goal is a RISCAL specification containing:

- Non-recursive data types for CNF, DNF.
- A Predicate satisfies for the non-recursive data types.
- Predicates for derived notions valid, satisfiable, logically equivalent, ...
- Functions computing CNF, DNF from recursive representation.
- Verification of the logical equivalence of the resulting and the original formula.

Negation Normal Form (NNF) - Definition

A propositional formula is in Negation Normal Form (NNF) iff it does not contain the connectives $\Leftrightarrow, \Rightarrow$ and negations are only applied on atomic values.

Definition: A literal is either an atom or the negation of an atom. A formula in NNF can be expressed by truth values, literals, connectives \vee, \wedge and parenthesis.

Negation Normal Form (NNF) - Computation

Apply transformations:

- Eliminate \Leftrightarrow and \Rightarrow

$$
\begin{gathered}
p \Leftrightarrow q \equiv(p \Rightarrow q) \wedge(q \Rightarrow p) \\
p \Rightarrow q \equiv \neg p \vee q
\end{gathered}
$$

- Push negations inside (De Morgan's laws)

$$
\begin{aligned}
& \neg(p \wedge q) \equiv \neg p \vee \neg q \\
& \neg(p \vee q) \equiv \neg p \wedge \neg q
\end{aligned}
$$

- Negation of negation

$$
\neg \neg p \equiv p
$$

Conjunctive Normal Form (CNF)

A propositional formula is in conjunctive normal form (CNF) iff it is a conjunction of disjunctions of literals.

This means, the formula is in the form

$$
C_{1} \wedge C_{2} \wedge \cdots \wedge C_{n}
$$

and for $i=1 . . n, C_{i}$ is a disjunction of literals, which means

$$
a_{i, 1} \vee a_{i, 2} \vee \cdots \vee a_{i, m}
$$

with literals $a_{i, k}, k=1 . . m$

Disjunctive Normal Form (DNF)

A propositional formula is in disjunctive normal form (DNF) iff it is a disjunction of conjunctions of literals.

This means, the formula is in the form

$$
D_{1} \vee D_{2} \vee \cdots \vee D_{n}
$$

and for $i=1 . . n, D_{i}$ is a conjunction of literals, which means

$$
a_{i, 1} \wedge a_{i, 2} \wedge \cdots \wedge a_{i, m}
$$

with literals $a_{i, k}, k=1 . . m$

Computation of DNF / CNF

CNF/DNF can be computed by systematic application of transformations.

$$
\begin{aligned}
& p \vee(q \wedge r) \equiv(p \vee q) \wedge(p \vee r) \\
& p \wedge(q \vee r) \equiv(p \wedge q) \vee(p \wedge r)
\end{aligned}
$$

Goal: SAT Solving

The goal is a RISCAL specification containing:

- Recursive function implementing the DPLL algorithm.
- Iterative procedure implementing DPLL.
- Verification of correctness of both (pre-/postconditions, termination measures, invariants)

There already exist basic implementations of DPLL in both recursive and iterative way. (RISCAL Samples)

Goal: Extend these to "real" algorithm with some optimizations.

Boolean satisfiability problem (SAT)

- Problem: Is a propositional formula satisfiable?
- Common problem in artificial intelligence, automated theorem proving, ...
- For n variables there exist 2^{n} different valuations.

Is there a better approach than Brute Force?

- Deciding satisfiability for formulas in CNF
- 1960: first algorithm by Davis and Putnam
- 1962: enhanced algorithm by Davis, Logemann and Loveland
- Foundation for modern SAT-solvers.
- Idea: apply rules to eliminate literals step-by-step
- If we obtain an empty set of clauses, the formula is satisfiable.
- If we obtain some empty clause, the formula is unsatisfiable.
- Input: φ.. a propositional formula in CNF
- Output: \mathbb{T} if φ is satisfiable, \mathbb{F} otherwise

One Literal Rule

Given a formula in CNF

$$
C_{1} \wedge C_{2} \wedge \cdots \wedge C_{n}
$$

If there is a C_{i} that contains only a single literal a we will

- eliminate all clauses containing a
- remove $\neg a$ from every clause
without affecting the satisfiability of the formula.

Pure Literal Rule

Given a formula in CNF

$$
C_{1} \wedge C_{2} \wedge \cdots \wedge C_{n}
$$

If there is a literal a that does occur in some C_{i} but $\neg a$ does not occur in any C_{j} we will

- eliminate all clauses containing a without affecting the satisfiability of the formula.

Splitting Rule

Given a formula in CNF

$$
C_{1} \wedge C_{2} \wedge \cdots \wedge C_{n}
$$

If there is a literal a that does occur in some C_{i} and also $\neg a$ does occur in some C_{j} we will

- split the problem in two subproblems

$$
\begin{aligned}
& C_{1} \wedge \cdots \wedge C_{n} \wedge a \\
& C_{1} \wedge \cdots \wedge C_{n} \wedge \neg a
\end{aligned}
$$

the original formula is satisfiable iff one of the two resulting formulas is satisfiable

Goal: Syntax and Semantics of First-Order Logic

The goal is a RISCAL specification containing:

- Data types Term, Formula (both recursive), Interpretation and Valuation
- Functions computing the meaning of terms and formulas in particular interpretation and valuation.
- A predicate satisfies that denotes whether a given interpretation satisfies a formula.
- Predicates for derived notions valid, satisfiable, logically equivalent, equisatisfiable ...
- Theorems stating the connection between those predicates
- A function computing the free variables of a formula.

First-Order Logic

Propositional Logic is not always enough:
How to express the following in a propositional formula?
For every y there exists an x such that x is greater than y.

We will introduce:

- A domain of terms for variables
- Functions to map terms to other terms
- Predicates to assign truth values to terms
- Quantifiers

Syntax of First-Order Logic

- Terms t
- variables v
- constants C
- functions $f\left(t_{1}, \ldots, t_{n}\right)$ map n terms to another term
- Formulas φ
- truth constants \mathbb{T}, \mathbb{F}
- predicates $p\left(t_{1}, \ldots, t_{n}\right)$
map n terms to a truth value
- connectives $\neg \varphi, \varphi_{1} \wedge \varphi_{2}, \varphi_{1} \vee \varphi_{2}, \varphi_{1} \Rightarrow \varphi_{2}, \varphi_{1} \Leftrightarrow \varphi_{2}$
- quantified formulas $\exists v . \varphi, \forall v . \varphi$
- parentheses (φ)

Free Variables

- a variable that occurs after a quantifier is called bound ($\exists v . \varphi$ or $\forall v . \varphi$)
- a variable is free if it is not bound

$$
\begin{aligned}
\operatorname{freevars}(v) & =\{v\} \\
\operatorname{freevars}\left(f\left(t_{1}, \ldots, t_{n}\right)\right) & =\operatorname{freevars}\left(t_{1}\right) \cup \cdots \cup \operatorname{freevars}\left(t_{n}\right) \\
\operatorname{freevars}(\mathbb{T}) & =\emptyset \\
\operatorname{freevars}(\mathbb{F}) & =\emptyset \\
\operatorname{freevars}\left(p\left(t_{1}, \ldots, t_{n}\right)\right) & =\operatorname{freevars}\left(t_{1}\right) \cup \cdots \cup \operatorname{freevars}\left(t_{n}\right) \\
\operatorname{freevars}(\neg \varphi) & =\operatorname{freevars}(\varphi) \\
\operatorname{freevars}\left(\varphi_{1} * \varphi_{2}\right) & =\operatorname{freevars}\left(\varphi_{1}\right) \cup \operatorname{freevars}\left(\varphi_{2}\right) \\
\operatorname{freevars}(\exists v . \varphi) & =\operatorname{freevars}(\varphi) \backslash\{v\} \\
\operatorname{freevars}(\forall v . \varphi) & =\operatorname{freevars}(\varphi) \backslash\{v\}
\end{aligned}
$$

Semantics of First-Order Logic I

To define semantics of first-order formulas we introduce:

- A domain of terms D
- a valuation $v: \mathcal{V} \rightarrow D$
- maps to every variable a term in D
- an interpretation / consisting of
- A mapping c_{l} for every constant c to an element in D.
- A mapping f_{l} for each function $f, f_{l}: D^{n} \rightarrow D$.
- A mapping f_{l} for each predicate $p, p_{l}: D^{n} \rightarrow\{\mathbb{T}, \mathbb{F}\}$

Semantics of First-Order Logic II

Meaning of terms:

$\langle t\rangle_{I, v}$ maps to every term t its meaning (in D) for a particular interpretation $/$ and valuation v

$$
\begin{aligned}
\langle x\rangle_{I, v} & =v(x) \\
\langle c\rangle_{I, v} & =c_{l} \\
\left\langle f\left(t_{1}, \ldots, t_{n}\right)\right\rangle_{I, v} & =f_{l}\left(\left\langle t_{1}\right\rangle_{I, v}, \ldots,\left\langle t_{n}\right\rangle_{I, v}\right)
\end{aligned}
$$

Semantics of First-Order Logic III

Meaning of formulas:
$\langle\varphi\rangle_{I, v}$ maps to every first-order formula φ its meaning for a particular interpretation I and valuation v

$$
\begin{aligned}
\langle\mathbb{T}\rangle_{I, v} & =\mathbb{T} \\
\langle\mathbb{F}\rangle_{I, v} & =\mathbb{F} \\
\left\langle p\left(t_{1}, \ldots, t_{n}\right)\right\rangle_{I, v} & =p_{I}\left(\left\langle t_{1}\right\rangle_{I, v}, \ldots,\left\langle t_{n}\right\rangle_{I, v}\right) \\
\langle\neg \varphi\rangle_{I, v} & =\mathcal{B}_{\neg}\left(\langle\varphi\rangle_{I, v}\right) \\
\left\langle\varphi_{1} * \varphi_{2}\right\rangle_{I, v} & =\mathcal{B}_{*}\left(\left\langle\varphi_{1}\right\rangle_{I, v},\left\langle\varphi_{2}\right\rangle_{I, v}\right), \quad \text { for } * \in\{\wedge, \vee, \Rightarrow \Leftrightarrow\} \\
\langle\exists x . \varphi\rangle_{I, v} & = \begin{cases}\mathbb{T}, & \text { if }\langle\varphi\rangle_{I, v[x \mapsto d]}=\mathbb{T} \text { for some } d \in D \\
\mathbb{F}, & \text { otherwise }\end{cases} \\
\langle\forall x . \varphi\rangle_{I, v} & = \begin{cases}\mathbb{T}, & \text { if }\langle\varphi\rangle_{I, v[x \mapsto d]}=\mathbb{T} \text { for all } d \in D \\
\mathbb{F}, & \text { otherwise }\end{cases}
\end{aligned}
$$

Validity, Satisfiability of First-Order Formulas

A first-order formula is ...

- valid iff it holds for all interpretations and valuations.
- satisfied by an interpretation iff it holds for all valuations under this interpretation.
- satisfiable iff there exists some interpretation that satisfies the formula.
- unsatisfiable iff it is not satisfied by any interpretation.

A first-order formula φ is valid iff $\neg \varphi$ is unsatisfiable.

First-Order Logic - Terminology

Two first-order formulas φ, ψ are logically equivalent iff for all interpretations $/$ and valuations v

$$
\langle\varphi\rangle_{I, v}=\langle\psi\rangle_{I, v}
$$

holds.

Two first-order formulas φ, ψ are equisatisfiable iff φ is satisfiable when ψ is satisfiable and vice versa.

Logically equivalent formulas are also equisatisfiable.
But there are equisatisfiable formulas which are not logically equivalent!

Goal: Prenex Normal Form and Skolemnization

The goal is a RISCAL specification containing:

- A recursive data type for formulas in Prenex Normal Form.
- Predicates describing the syntax of this new data type. (satisfies, satisfiable, logically equivalent, equi-satisfiable)
- A Function transforming a formula to Prenex Normal Form.
- Verification of the logical equivalence
- Predicates denoting whether a formula is in Prenex Normal Form / Skolem Normal Form
- A function implementing Skolemization.
- Verification of the equi-satisfiability.

Prenex Normal Form (PNF)

A first-order formula is in Prenex Normal Form (PNF) iff there is no quantifier appearing as a subformula of a connective.

Example:

- $\forall x . \exists y \cdot(p(x, y) \wedge q(y))$
- prenex normal form.
- $\exists x . p(x) \vee \forall y . q(y)$
- not in prenex normal form.

For every first-order formula there is a logically equivalent formula in PNF.

Computation of Prenex Normal Form

- eliminate $\Leftrightarrow, \Rightarrow$
- push negations inside
- De Morgan's laws
- Negation on quantifiers

$$
\neg \forall x . q \equiv \exists x . \neg q \quad \neg \exists x . q \equiv \forall x . \neg q
$$

- pull out quantifiers:
- ensure bounded variables have unique names (no free or other bound variables with the same name)
- apply transformations

$$
\begin{array}{ll}
(\exists x . q) \wedge p \equiv \exists x \cdot(q \wedge p) & (\exists x \cdot q) \vee p \equiv \exists x .(q \vee p) \\
(\forall x . q) \wedge p \equiv \forall x \cdot(q \wedge p) & (\forall x \cdot q) \vee p \equiv \forall x .(q \vee p)
\end{array}
$$

Skolem Normal Form

A first-order formula is in Skolem Normal Form iff it contains no existential quantifiers and also is in Prenex Normal Form.

For every first-order formula there is a formula in Skolem Normal Form that is equisatisfiable to the original one.

Skolemization

Input: first-order formula
Output: formula in Skolem Normal Form equisatisfiable to the input
The following two statements are equivalent:

1. for all $x \in D$ there exists $y \in D$ such that $P(x, y)$ holds.
2. there exists a function $f: D \rightarrow D$ such that for all $x \in D, P(x, f(x))$ holds.
Idea: Introduce new functions to eliminate existential quantifiers.
Example:

$$
\begin{gathered}
\forall u \exists v \forall w \exists x \cdot P(u, v, w, x) \\
\rightsquigarrow \\
\forall u \forall w \cdot P(u, f(u), w, g(u, w))
\end{gathered}
$$

Summary: Goals of the thesis

- Goal: RISCAL specifications for Computational Logic
- (recursive) data types, predicates, theorems
- functions, procedures
- pre- and postconditions, invariants and termination measures
- Propositional Logic
- Syntax and Semantics
- Substitution
- Normal Forms
- DPLL with optimizations
- Application: Digital Circuits
- First-Order Logic
- Syntax and Semantics
- Syntactic Operations
- Prenex Normal Form
- Skolemization

