Specification and Verification of Algorithms from Computational Logic Bachelor Thesis Report

Johannes Grünberger

Johannes Kepler University, Linz, Austria j.gruenberger@live.at

November 14, 2019

Overview

Bachelor Thesis (Start in October 2019)

 Goal: Specify and Verify algorithms from computational logic with the RISC Algorithm Language.

- Content of this presentation:
 - RISC Algorithm Language
 - Propositional Logic
 - Goal: Syntax and Semantics
 - Goal: Substitution
 - Goal: Normal Forms
 - Goal: SAT Solving
 - First-Order Logic
 - Goal: Syntax and Semantics
 - Goal: Prenex Normal Form and Skolemnization

Summary

RISC Algorithm Language (RISCAL)

RISCAL is a **specification language** and **associated software tool** to ...

- Describe mathematical theories and algorithms
- Specify the behavior of algorithms:
 - Preconditions and Postconditions
 - Termination Measures
 - Loop Invariants
- Verify this theories over finite domains

RISCAL II

Goal: Syntax and Semantics of Propositional Logic

The goal is a RISCAL specification containing:

- Data types Formula (recursive) and Valuation
- A predicate *satisfies* denoting whether a particular valuation satisfies a formula.
- Predicates for derived notions valid, satisfiable, logically equivalent, ...
- Theorems stating the connection between those predicates

The logic of **propositions**:

- A proposition must be either True or False in a particular interpretation.
- Many applications in mathematics and computer science:
 - Mathematical Proof Theory
 - Foundation for First- and Higher-Order Logic
- The foundation for Formal Methods and Automated Theorem Proving

Syntax of Propositonal Formulas

- **Truth Constants:** $\{\mathbb{T}, \mathbb{F}\}$
- Atoms: $a \in \mathcal{V}$, for a finite set of variables \mathcal{V} .
- Negations: $\neg \varphi$, for propositional formula φ
- Logical Connectives: φ * ψ, for propositional formulas φ, ψ,
 * ∈ {∨, ∧, ⇒, ⇔}
- Parenthesis: (φ) , for propositional formula φ

Semantics of Logical Connectives

	\mathcal{B}_{ee}	\mathbb{T}	\mathbb{F}
$\mathcal{B}_{\vee} :=$	\mathbb{T}	T	\mathbb{T}
	\mathbb{F}	T	\mathbb{F}

	$\mathcal{B}_{\Leftrightarrow}$	\mathbb{T}	\mathbb{F}
$\mathcal{B}_{\Leftrightarrow} :=$	T	T	\mathbb{F}
	F	\mathbb{F}	T

Semantics of Propositonal Formulas

A valuation v maps to every atom a truth value.

$$\mathsf{v}:\mathcal{A} o\{\mathbb{T},\mathbb{F}\}$$

The meaning (φ)_ν maps to every formula φ a truth value under the valuation ν:

$$\begin{split} \langle \mathbb{T} \rangle_{\nu} &= \mathbb{T} \\ \langle \mathbb{F} \rangle_{\nu} &= \mathbb{F} \\ \langle a \rangle_{\nu} &= \nu(a), \text{ for atom } a \\ \langle \neg \varphi \rangle_{\nu} &= \mathcal{B}_{\neg}(\langle \varphi \rangle_{\nu}) \\ \langle \varphi * \psi \rangle_{\nu} &= \mathcal{B}_{\ast}(\langle \varphi \rangle_{\nu}, \langle \psi \rangle_{\nu}), \text{ for } \ast \in \{ \land, \lor, \Rightarrow, \Leftrightarrow \} \end{split}$$

• A valuation v satisfies a formula φ iff $\langle \varphi \rangle_v = \mathbb{T}$

Satisfiability, Validity of Propositional Formulas

A propositional formula φ is . . .

- ... satisfiable iff some valuation satisfies φ
- ... valid iff all valuations satisfy φ
- ... failable iff some valuation does not satisfy φ
- ... unsatisfiable iff no valuation satisfies φ

Theorem: A formula φ is valid iff $\neg \varphi$ is unsatisfiable.

A propositional formula φ is a **logical consequence** ($\Gamma \models \varphi$) of a set of formulas Γ iff all valuations v that satisfy all $\gamma \in \Gamma$ also satisfy φ .

Two propositional formulas φ , ψ are **logically equivalent** ($\varphi \equiv \psi$) iff they have the same truth value in every valuation. This means, for every valuation $v, \langle \varphi \rangle_v = \langle \psi \rangle_v$ holds.

 $(\varphi \equiv \psi) \text{ iff } \varphi \models \psi \text{ and } \psi \models \varphi.$

Syntax of Propositional Formulas in RISCAL

```
// the number of atoms
val N: N; // e.g. 3;
// the recursion height
val H: N:
// the raw types and the variously constrained subtypes
type Variable = Z[1,N];
rectype(H) Formula =
 TIFI
 VAR(Variable) | NOT(Formula) |
 AND(Formula, Formula) | OR(Formula, Formula) |
  IMPLIES(Formula, Formula) | IFF(Formula, Formula);
```

Semantics of Propositional Formulas in RISCAL

```
type LiteralBase = Z[-N,N];
type Literal = LiteralBase with value \neq 0;
type Valuation = Set[Literal]
  with |value| = \mathbb{N} \land (\forall l \in value. \neg(-l \in value));
pred satisfies(V:Valuation, f:Formula)
decreases height(f);
\Leftrightarrow match f with
  {
     T -> true;
     F -> false:
     VAR(v:Variable) \rightarrow v \in V;
     NOT(f1:Formula) -> ¬satisfies(V.f1):
     AND(f1:Formula, f2:Formula) ->
       satisfies (V, f1) \land satisfies (V, f2);
     OR(f1:Formula, f2:Formula) ->
       satisfies (V, f1) \lor satisfies (V, f2);
     IMPLIES(f1:Formula, f2:Formula) ->
       satisfies (V, f1) \Rightarrow satisfies (V, f2):
     IFF(f1:Formula, f2:Formula) ->
       satisfies(V.f1) \Leftrightarrow satisfies(V.f2):
    };
pred satisfiable(f:Formula)
```

```
\Leftrightarrow (\exists V: Valuation. satisfies(V,f));
```

Goal: Substitution

Goal: A RISCAL function substituting every occurrence of an atom in a formula with another formula.

Example:

Original formula: $(A \land B) \lor (A \land C)$ Substituting A with $(\neg D \Rightarrow C)$ leads to new formula

$$((\neg D \Rightarrow C) \land B) \lor ((\neg D \Rightarrow C) \land C)$$

Theorem: A tautology stays a tautology after substitution

Specification of this theorem in RISCAL

Goal: Normal Forms

The goal is a RISCAL specification containing:

- Non-recursive data types for CNF, DNF.
- A Predicate *satisfies* for the non-recursive data types.
- Predicates for derived notions valid, satisfiable, logically equivalent, ...
- Functions computing CNF, DNF from recursive representation.
 - Verification of the logical equivalence of the resulting and the original formula.

A propositional formula is in Negation Normal Form (NNF) iff it does not contain the connectives \Leftrightarrow , \Rightarrow and negations are only applied on atomic values.

Definition: A **literal** is either an atom or the negation of an atom. A formula in NNF can be expressed by truth values, literals, connectives \lor , \land and parenthesis. Negation Normal Form (NNF) - Computation

Apply transformations:

 $\blacktriangleright \ {\sf Eliminate} \Leftrightarrow {\sf and} \Rightarrow$

$$p \Leftrightarrow q \equiv (p \Rightarrow q) \land (q \Rightarrow p)$$

 $p \Rightarrow q \equiv \neg p \lor q$

Push negations inside (De Morgan's laws)

$$eglephi(p \land q) \equiv \neg p \lor \neg q$$

 $eglephi(p \lor q) \equiv \neg p \land \neg q$

Negation of negation

$$\neg \neg p \equiv p$$

Conjunctive Normal Form (CNF)

A propositional formula is in **conjunctive normal form** (CNF) iff it is a conjunction of disjunctions of literals.

This means, the formula is in the form

 $C_1 \wedge C_2 \wedge \cdots \wedge C_n$

and for $i = 1..n, C_i$ is a disjunction of literals, which means

$$a_{i,1} \vee a_{i,2} \vee \cdots \vee a_{i,m}$$

with literals $a_{i,k}, k = 1..m$

Disjunctive Normal Form (DNF)

A propositional formula is in **disjunctive normal form** (DNF) iff it is a disjunction of conjunctions of literals.

This means, the formula is in the form

 $D_1 \vee D_2 \vee \cdots \vee D_n$

and for $i = 1..n, D_i$ is a conjunction of literals, which means

$$a_{i,1} \wedge a_{i,2} \wedge \cdots \wedge a_{i,m}$$

with literals $a_{i,k}, k = 1..m$

Computation of DNF / CNF

CNF/DNF can be computed by systematic application of transformations.

$$p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$$

 $p \land (q \lor r) \equiv (p \land q) \lor (p \land r)$

Goal: SAT Solving

The goal is a RISCAL specification containing:

- Recursive function implementing the DPLL algorithm.
- Iterative procedure implementing DPLL.
- Verification of correctness of both (pre-/postconditions, termination measures, invariants)

There already exist basic implementations of DPLL in both recursive and iterative way. (RISCAL Samples)

Goal: Extend these to "real" algorithm with some optimizations.

Boolean satisfiability problem (SAT)

- Problem: Is a propositional formula satisfiable?
- Common problem in artificial intelligence, automated theorem proving, . . .
- For *n* variables there exist 2^n different valuations.

Is there a better approach than Brute Force?

DPLL

- Deciding satisfiability for formulas in CNF
- 1960: first algorithm by Davis and Putnam
- 1962: enhanced algorithm by Davis, Logemann and Loveland
- Foundation for modern SAT-solvers.
- Idea: apply rules to eliminate literals step-by-step
 - If we obtain an empty set of clauses, the formula is satisfiable.
 - If we obtain some empty clause, the formula is unsatisfiable.
- **Input:** φ .. a propositional formula in **CNF**
- **• Output:** \mathbb{T} if φ is satisfiable, \mathbb{F} otherwise

Given a formula in CNF

$$C_1 \wedge C_2 \wedge \cdots \wedge C_n$$

If there is a C_i that contains only a single literal a we will

- eliminate all clauses containing a
- **•** remove $\neg a$ from every clause

without affecting the satisfiability of the formula.

Given a formula in CNF

$$C_1 \wedge C_2 \wedge \cdots \wedge C_n$$

If there is a **literal** *a* that does occur in some C_i but $\neg a$ does not occur in any C_j we will

eliminate all clauses containing a

without affecting the satisfiability of the formula.

Splitting Rule

Given a formula in CNF

$$C_1 \wedge C_2 \wedge \cdots \wedge C_n$$

If there is a literal *a* that does occur in some C_i and also $\neg a$ does occur in some C_j we will

split the problem in two subproblems

 $C_1 \wedge \cdots \wedge C_n \wedge a$ $C_1 \wedge \cdots \wedge C_n \wedge \neg a$

the original formula is satisfiable iff one of the two resulting formulas is satisfiable

Goal: Syntax and Semantics of First-Order Logic

The goal is a RISCAL specification containing:

- Data types Term, Formula (both recursive), Interpretation and Valuation
- Functions computing the meaning of terms and formulas in particular interpretation and valuation.
- A predicate satisfies that denotes whether a given interpretation satisfies a formula.
- Predicates for derived notions valid, satisfiable, logically equivalent, equisatisfiable ...
- Theorems stating the connection between those predicates
- A function computing the free variables of a formula.

Propositional Logic is not always enough:

How to express the following in a propositional formula? For every y there exists an x such that x is greater than y.

We will introduce:

- A domain of terms for variables
- Functions to map terms to other terms
- Predicates to assign truth values to terms
- Quantifiers

Syntax of First-Order Logic

Terms t variables v **constants** c • functions $f(t_1, \ldots, t_n)$ map *n* terms to another term Formulas φ truth constants T.F **predicates** $p(t_1, \ldots, t_n)$ map *n* terms to a truth value • connectives $\neg \varphi, \varphi_1 \land \varphi_2, \varphi_1 \lor \varphi_2, \varphi_1 \Rightarrow \varphi_2, \varphi_1 \Leftrightarrow \varphi_2$ **quantified formulas** $\exists v.\varphi, \forall v.\varphi$ **b** parentheses (φ)

Free Variables

- a variable that occurs after a quantifier is called bound (∃ν.φ or ∀ν.φ)
- a variable is free if it is not bound

 $freevars(v) = \{v\}$ $freevars(f(t_1,...,t_n)) = freevars(t_1) \cup \cdots \cup freevars(t_n)$

 $freevars(\mathbb{T}) = \emptyset$ $freevars(\mathbb{F}) = \emptyset$ $freevars(p(t_1, ..., t_n)) = freevars(t_1) \cup \cdots \cup freevars(t_n)$ $freevars(\neg \varphi) = freevars(\varphi)$ $freevars(\varphi_1 * \varphi_2) = freevars(\varphi_1) \cup freevars(\varphi_2)$ $freevars(\exists v.\varphi) = freevars(\varphi) \setminus \{v\}$ $freevars(\forall v.\varphi) = freevars(\varphi) \setminus \{v\}$

Semantics of First-Order Logic I

To define semantics of first-order formulas we introduce:

- A domain of terms D
- ▶ a valuation $v : V \to D$
 - maps to every variable a term in D
- an interpretation / consisting of
 - A mapping c_l for every constant c to an element in D.
 - A mapping f_l for each function $f, f_l : D^n \to D$.
 - A mapping f_l for each predicate $p, p_l : D^n \to \{\mathbb{T}, \mathbb{F}\}$

Semantics of First-Order Logic II

Meaning of terms:

 $\langle t \rangle_{I,v}$ maps to every term t its meaning (in D) for a particular interpretation I and valuation v

$$\begin{aligned} \langle x \rangle_{I,v} &= v(x) \\ \langle c \rangle_{I,v} &= c_I \\ \langle f(t_1, \dots, t_n) \rangle_{I,v} &= f_I(\langle t_1 \rangle_{I,v}, \dots, \langle t_n \rangle_{I,v}) \end{aligned}$$

Semantics of First-Order Logic III

Meaning of formulas:

 $\langle \varphi \rangle_{I,v}$ maps to every first-order formula φ its meaning for a particular interpretation I and valuation v

$$\langle \mathbb{T} \rangle_{I,v} = \mathbb{T} \\ \langle \mathbb{F} \rangle_{I,v} = \mathbb{F} \\ \langle p(t_1, \dots, t_n) \rangle_{I,v} = p_I(\langle t_1 \rangle_{I,v}, \dots, \langle t_n \rangle_{I,v}) \\ \langle \neg \varphi \rangle_{I,v} = \mathcal{B}_{\neg}(\langle \varphi \rangle_{I,v}) \\ \langle \varphi_1 * \varphi_2 \rangle_{I,v} = \mathcal{B}_{\ast}(\langle \varphi_1 \rangle_{I,v}, \langle \varphi_2 \rangle_{I,v}), \quad \text{for } \ast \in \{ \wedge, \vee, \Rightarrow \Leftrightarrow \} \\ \langle \exists x.\varphi \rangle_{I,v} = \begin{cases} \mathbb{T}, & \text{if } \langle \varphi \rangle_{I,v[x \mapsto d]} = \mathbb{T} \text{ for some } d \in D \\ \mathbb{F}, & \text{otherwise} \end{cases} \\ \langle \forall x.\varphi \rangle_{I,v} = \begin{cases} \mathbb{T}, & \text{if } \langle \varphi \rangle_{I,v[x \mapsto d]} = \mathbb{T} \text{ for all } d \in D \\ \mathbb{F}, & \text{otherwise} \end{cases}$$

Validity, Satisfiability of First-Order Formulas

A first-order formula is ...

- **valid** iff it holds for all interpretations and valuations.
- satisfied by an interpretation iff it holds for all valuations under this interpretation.
- satisfiable iff there exists some interpretation that satisfies the formula.
- **unsatisfiable** iff it is not satisfied by any interpretation.

A first-order formula φ is valid iff $\neg \varphi$ is unsatisfiable.

First-Order Logic - Terminology

Two first-order formulas φ, ψ are **logically equivalent** iff for all interpretations I and valuations v

$$\langle \varphi \rangle_{I,\nu} = \langle \psi \rangle_{I,\nu}$$

holds.

Two first-order formulas φ, ψ are **equisatisfiable** iff φ is satisfiable when ψ is satisfiable and vice versa.

Logically equivalent formulas are also equisatisfiable. But there are equisatisfiable formulas which are not logically equivalent!

Goal: Prenex Normal Form and Skolemnization

The goal is a RISCAL specification containing:

- A recursive data type for formulas in Prenex Normal Form.
- Predicates describing the syntax of this new data type. (satisfies, satisfiable, logically equivalent, equi-satisfiable)
- A Function transforming a formula to Prenex Normal Form.
 - Verification of the logical equivalence
- Predicates denoting whether a formula is in Prenex Normal Form / Skolem Normal Form
- A function implementing Skolemization.
 - Verification of the equi-satisfiability.

Prenex Normal Form (PNF)

A first-order formula is in **Prenex Normal Form (PNF)** iff there is no quantifier appearing as a subformula of a connective.

Example:

- $\blacktriangleright \forall x. \exists y. (p(x, y) \land q(y))$
 - prenex normal form.
- $\blacktriangleright \exists x.p(x) \lor \forall y.q(y)$
 - **not** in prenex normal form.

For every first-order formula there is a logically equivalent formula in PNF.

Computation of Prenex Normal Form

- $\blacktriangleright \text{ eliminate } \Leftrightarrow, \Rightarrow$
- push negations inside
 - De Morgan's laws
 - Negation on quantifiers

$$\neg \forall x.q \equiv \exists x. \neg q \qquad \neg \exists x.q \equiv \forall x. \neg q$$

pull out quantifiers:

- ensure bounded variables have unique names (no free or other bound variables with the same name)
- apply transformations

$$(\exists x.q) \land p \equiv \exists x.(q \land p) \qquad (\exists x.q) \lor p \equiv \exists x.(q \lor p)$$
$$(\forall x.q) \land p \equiv \forall x.(q \land p) \qquad (\forall x.q) \lor p \equiv \forall x.(q \lor p)$$

A first-order formula is in **Skolem Normal Form** iff it contains no existential quantifiers and also is in Prenex Normal Form.

For every first-order formula there is a formula in Skolem Normal Form that is **equisatisfiable** to the original one.

Skolemization

Input: first-order formula

Output: formula in Skolem Normal Form equisatisfiable to the input

The following two statements are equivalent:

- 1. for all $x \in D$ there exists $y \in D$ such that P(x, y) holds.
- 2. there exists a function $f : D \to D$ such that for all $x \in D, P(x, f(x))$ holds.

Idea: Introduce new functions to eliminate existential quantifiers. **Example:**

$$\forall u \exists v \forall w \exists x. P(u, v, w, x)$$

 \rightsquigarrow

 $\forall u \forall w. P(u, f(u), w, g(u, w))$

Summary: Goals of the thesis

- Goal: RISCAL specifications for Computational Logic
 - (recursive) data types, predicates, theorems
 - functions, procedures
 - pre- and postconditions, invariants and termination measures
- Propositional Logic
 - Syntax and Semantics
 - Substitution
 - Normal Forms
 - DPLL with optimizations
 - Application: Digital Circuits
- First-Order Logic
 - Syntax and Semantics
 - Syntactic Operations
 - Prenex Normal Form
 - Skolemization