The Integration of SMT Solvers into the RISCAL Model Checker

First Master Thesis Report

Franz Reichl
October 31, 2019

- Motivation and Aim for the Thesis
- Foundations
- Setting of the Problem
- Quantifier Elimination
- Theory Translations
- Conclusion \& Current Work

Motivation and Aim of the Thesis

- Elaboration of an alternative way of checking RISCAL formulae.
- Translation of the RISCAL language to SMT-LIB
- Application of an SMT solver
- Increase the efficiency of checking formulae.
- Other specification languages already use such translations.
- JML - OpenJML
- TLA+
- Event-B

Foundations

RISC Algorithm Language - RISCAL

- Specification language developed by Prof. Schreiner at RISC
- RISCAL is freely available at https://www3.risc.jku.at/research/formal/software/RISCAL/
- Supports the specification of both mathematical theories and algorithms
- Rich language supporting booleans, integers, tuples, arrays,...
- Provides automatic checking (by explicit evaluation)
- Based on a finite type system

Foundations - RISCAL

Foundations

Reminder (multi-sorted) first order Logic.

$\forall x \in A: Q(x) \Rightarrow \exists y \in B: P(x, y)$

- Quantifiers, variables
- Logical connectives
- Sort symbols A, B
- Operation symbols Q, P

We associate a meaning to such formulae by means of interpretations.

- We assign sets to the sort symbols.
- We assign functions to the operation symbols.

Foundations

Satisfiability - Validity

A formula is:

- satisfiable iff there is an interpretation that makes it true.
- valid iff any interpretation makes it true.

Satisfiability and Validity are dual properties:

- A formula is valid iff its negation is unsatisfiable.

Foundations

Satisfiability Modulo Theories (SMT) - Motivation

Consider the following formula $f(1)<f(1)$

- In the usual context of mathematics we would consider this formula as incorrect.
- But this formula is satisfiable.

Conclusion: Restrict the considered interpretations

Foundations

Satisfiability Modulo Theories

A theory denotes a class of interpretations.
Let T be a theory then a formula is:

- satisfiable modulo T iff there is an interpretation from T that makes it true.
- valid modulo T iff any interpretation from T makes it true.

Foundations

Satisfiability Modulo Theories - Example

Lets come back to the motivating example: $f(1)<f(1)$
The theory of integers / contains only interpretations that:

- Assign the expected values to the constants $0,1,2, \cdots$
- Assign the expected meaning to the operations,,$+-<,>, \cdots$
$f(1)<f(1)$ is unsatisfiable modulo I.

Foundations

Satisfiability Modulo Theories - Quantifier free Theory of Bit Vectors

In this thesis we use the bit vector theory because:

- Bit vectors are well suited for modelling the RISCAL types.
- Similar to RISCAL all types in this theory are finite.

Foundations

Satisfiability Modulo Theories - Quantifier free Theory of Bit Vectors

In this thesis we use the bit vector theory because:

- Bit vectors are well suited for modelling the RISCAL types.
- Similar to RISCAL all types in this theory are finite.

In this theory we have:

- Formulae contain no quantifiers.
- Sequences of arbitrary but fixed length, of zeroes and ones.
- Various operations including:
- Bitwise arithmetic operations
- Shift operations

Foundations

SMT-LIB

SMT-LIB was founded in 2002 by Silvio Ranise and Cesare Tinelli.
SMT-LIB consists of three parts:

- A standardized description of theories.
- A collection of benchmarks for SMT solvers.
- An input and output language for SMT solvers.

For more information on SMT-LIB see http://smtlib.cs.uiowa.edu/

Foundations

SMT-LIB Example

```
(declare-fun x() (_ BitVec 4))
(define-fun y() (_ BitVec 4)#b0001)
(assert (not (bvule x (bvadd x y))))
(check-sat)
```

Applying the SMT-solver Boolector to this script yields the result satisfiable. \rightsquigarrow If we assign 1111 to x the asserted property holds.

The problem setting

Given a list of correct RISCAL declarations D_{1}, \cdots, D_{n} and a RISCAL theorem $T h$
Check if $T h$ is valid.

The problem setting

Given a list of correct RISCAL declarations D_{1}, \cdots, D_{n} and a RISCAL theorem $T h$ Check if Th is valid.

We can model RISCAL declarations by formulae F_{1}, \cdots, F_{m} and F which are interpreted with respect to the RISCAL theory R

Thus we have to check whether all R interpretations that make $F_{1}, \cdots F_{n}$ true also make F true. (i.e. $F_{1}, \cdots, F_{m} \vDash_{R} F$.)

The problem setting

We know
$F_{1}, \cdots, F_{m} \vDash F$ iff $\bigwedge_{i=1}^{n} F_{i} \Rightarrow F$ is valid.
Similar we have for a theory T
$F_{1}, \cdots, F_{m} \vDash_{T} F$ iff $\bigwedge_{i=1}^{n} F_{i} \Rightarrow F$ is valid modulo T.
Therefore we have to show that $\left(\bigwedge_{i=1}^{n} F_{i}\right) \Rightarrow F$ is valid modulo R. This is equivalent to showing that $\left(\bigwedge_{i=1}^{n} F_{i}\right) \wedge \neg F$ is unsatisfiable modulo R.

The problem setting

Our goal is to find a translation Ψ such that for any RISCAL-formula F the following properties of $\Psi(F)$ are fulfilled:

- Contains no quantifiers
- $\Psi(F)$ is satisfiable modulo the bit vector theory iff F is satisfiable modulo R.

Quantifier Elimination

Unquantification Algorithm

Input: A formula F_{0}
Require: $\operatorname{free}\left(F_{0}\right)=\emptyset$
Output: A formula $F_{\text {out }}$
Ensure: F_{0} and $F_{\text {out }}$ are equisatisfiable with respect to the theory of RISCAL
Ensure: $\nexists p \in \operatorname{Pos}\left(F_{\text {out }}\right), x^{i} \in \mathcal{V}, F^{\prime} \in \mathcal{L}: F_{\text {out }}\langle p\rangle=\forall_{\mathcal{L}} x^{i} F^{\prime}$
Ensure: $\nexists p \in \operatorname{Pos}\left(F_{\text {out }}\right), x^{i} \in \mathcal{V}, F^{\prime} \in \mathcal{L}: F_{\text {out }}\langle p\rangle=\exists_{\mathcal{L}} x^{i} F^{\prime}$
: function Unquantify $\left(F_{0}\right)$
$F_{1} \leftarrow \operatorname{RemImpEqu}\left(F_{0}\right)$
$F_{2} \leftarrow \operatorname{SinkNEG}\left(F_{1}\right)$
$F_{3} \leftarrow \operatorname{UniQVars}\left(F_{2}, \emptyset\right.$, bound $\left.(F)\right)$
$\left(F_{4}, F S\right) \leftarrow \operatorname{SkoL}\left(F_{3}, \operatorname{getOpSyms}\left(F_{3}\right) \cup O p_{R I S C A L} \cup O p_{B V}\right)$
$F_{5} \leftarrow \operatorname{ExpAlL}\left(F_{4}\right)$
return F_{5}
end function

Quantifier Elimination

Quantifier Expansion

Reminder: In RISCAL we have finite types.
Let T be a type and $T=\left\{t_{1}, \cdots, t_{n}\right\}$ then

- $\forall x \in T: P(x) \equiv \bigwedge_{i=1}^{n} P\left(t_{i}\right)$.
- $\exists x \in T: P(x) \equiv \bigvee_{i=1}^{n} P\left(t_{i}\right)$.

Example:
$\forall x \in \mathbb{Z}[0,2]: x<3 \rightsquigarrow(0<3) \wedge(1<3) \wedge(2<3)$

Quantifier Elimination

Skolemisation

Preparatory steps:

- Removal of implications and equivalences
- Push negations inwards
- Rename variables

Quantifier Elimination

Skolemisation

Preparatory steps:

- Removal of implications and equivalences
- Push negations inwards
- Rename variables

After this preparatory steps we have to

- Determine the free variables in the respective expression.
- Find an unused operation symbol.
- Replace each occurrence of the quantified variable by the operation symbol applied to the free variables.

Quantifier Elimination

Skolemisation

Preservation of satisfiability

- The preparatory steps preserve equality.
- The skolemised formula is satisfiable iff the original formula is satisfiable.

Quantifier Elimination

Skolemisation

Preservation of satisfiability

- The preparatory steps preserve equality.
- The skolemised formula is satisfiable iff the original formula is satisfiable.

Example: $\forall x \in A:(\forall y \in B: P(x, y)) \Rightarrow \forall x \in C: Q(x)$
First we rewrite this formula to:
$\forall x \in A:(\exists y \in B: \neg P(x, y)) \vee \forall z \in C: Q(z)$
The only free variable in $\exists y \in B: \neg P(x, y)$ is y therefore we get
$\forall x \in A: \neg P(x, f(x)) \vee \forall z \in C: Q(z)$

Theory Translations

Booleans

- Logical connectives are available in both theories.
- We will deal with special predicates (like $<,>$) when we discuss the translation of the types of the predicate's arguments.

Theory Translations

Integers

There is a close relation between bit vectors and integers.
Let b be a bit vector of length n then we assign integers to bit vectors in the following ways:

- Signed Representation: $-b[n] \cdot 2^{n}+\sum_{i=1}^{n-1} b[i] \cdot 2^{i}$
- Unsigned Representation: $\sum_{i=1}^{n} b[i] \cdot 2^{i}$

Theory Translations

Integers

For several integer operations in the RISCAL theory there are related operations in the bit vector theory. (e.g.,,$+-<,>, \cdots$)

Especially two problems arise:

- The operations from the bit vector theory require arguments of the same length.
- The arithmetic operations from the bit vector theory correspond to modular integer arithmetic.

Example: Consider the expression $4+1$ from the RISCAL theory. We can associate 4 to the bit vector 100 and 1 to the bit vector 1 .
\rightsquigarrow There is no addition function for arguments of different lengths.

Theory Translations

Integers

Solution to the problems: Find an appropriate vector length and associate the integers to bitvectors of this length.

For an RISCAL integer expression we determine

- The vector length necessary to represent the expression itself.
- The vector lengths necessary to represent the integer sub expressions.

We use the maximum of these lengths as the length of our bit vectors

Theory Translations

Integers

Example: $8-(4+4)$

- We need a vector of length 1 to represent $0=8-(4+4)$
- We need a vector of length 4 to represent 8
- We need a vector of length 3 to represent 4

Thus we use bit vectors of length 4 i.e. (bvsub 1000 (bvadd 0100 0100))

Theory Translations

Integers

Example: $8-(4+4)$

- We need a vector of length 1 to represent $0=8-(4+4)$
- We need a vector of length 4 to represent 8
- We need a vector of length 3 to represent 4

Thus we use bit vectors of length 4 i.e. (bvsub 1000 (bvadd 0100 0100))
This procedure ensures that

- The arguments of functions have the same length.
- No overflows occur.

Translation - Example

```
val N: N;
type nat =\mathbb{N}[N];
pred divides(m: nat, n: nat) \Leftrightarrow\existsp:nat. m·p=n;
pred isGCD(g:nat,m:nat,n:nat)
requires m f 0 V n f=0;
\Leftrightarrow divides(g,m) ^ divides(g,n)^\neg\existsr:nat. divides(r,m) ^ divides(r,n) ^ r > g;
theorem gcd0(m: nat) \Leftrightarrowm\not=0=> isGCD (m,m,0);
theorem gcd1(m: nat, n: nat) \Leftrightarrowm\not=0\vee n f=0=>\existsg:nat. isGCD(g,m,n)^isGCD (g,n,m);
```

We want to show that the theorem gcd1 holds.

Translation - Example

```
(set-logic QF_UFBV)
(define-fun N () (_ BitVec 2) #b10)
(define-sort nat ()(_ BitVec 2))
(define-fun divides ((m (_ BitVec 2)) (n (_ BitVec 2)))Bool (or (let ((p #b00)) (= (bvmul ((_
    zero_extend 1) m) ((_ zero_extend 1) p)) ((_ zero_extend 1) n))) (let ((p #b01)) (= (bvmul ((_
    zero_extend 1) m) ((_ zero_extend 1) p)) ((_ zero_extend 1) n))) (let ((p #b10)) (= (bvmul ((_
    zero_extend 1) m) ((_ zero_extend 1) p)) ((_ zero_extend 1) n)))))
(define-fun isGCD ((g (_ BitVec 2)) (m (_ BitVec 2)) (n (_ BitVec 2)))Bool (and (and (divides g m) (
    divides g n)) (and (let ((r #b00)) (or (or (not (divides r m)) (not (divides r n))) (bvule r g)))
    (let ((r #b01)) (or (or (not (divides r m)) (not (divides r n))) (bvule r g))) (let ((r #b10)) (or
        (or (not (divides r m)) (not (divides r n))) (bvule r g))))))
(declare-fun f ()(_ BitVec 2))
(assert (and (bvule #b00 f) (bvuge #b10 f)))
(declare-fun f_1 ()(_ BitVec 2))
(assert (and (bvule #b00 f_1) (bvuge #b10 f_1)))
(assert (let ((m f))(let ((n f_1))(let (( result (or (and (= m #b00) (= n #b00)) (or (let ((g #b00)) (
    and (isGCD g m n) (isGCD g n m))) (let ((g #b01)) (and (isGCD g m n) (isGCD g n m))) (let ((g #b10
    )) (and (isGCD g m n) (isGCD g n m))))))) (not result)))))
(check-sat)(exit)
```

Applying the SMT-solver Boolector to this script yields the result unsatisfiable.

Future Work - Conclusion

Remaining work:

- Essentially the program is finished. The search for potential bugs remains.
- The remaining theories need to be formalized.
- Tests with the program have to be conducted in order to compare its performance with the performance of the existing checking mechanism.

Preliminary conclusion:

- Tests of the program already indicate that in certain cases the SMT solvers are much faster than the current evaluation mechanism.
- But the tests also indicate that for certain cases the SMT solver approach is much slower.

