The Integration of SMT Solvers into the
RISCAL Model Checker

First Master Thesis Report

Franz Reichl

October 31, 2019

Motivation and Aim for the Thesis

Foundations

Setting of the Problem

Quantifier Elimination

Theory Translations

Conclusion & Current Work

Motivation and Aim of the Thesis

e Elaboration of an alternative way of checking RISCAL formulae.
e Translation of the RISCAL language to SMT-LIB
e Application of an SMT solver

e Increase the efficiency of checking formulae.

e Other specification languages already use such translations.
e JML - OpenJML
o TLA+
e Event-B

RISC Algorithm Language - RISCAL

e Specification language developed by Prof. Schreiner at RISC

e RISCAL is freely available at
https://www3.risc. jku.at/research/formal/software/RISCAL/

e Supports the specification of both mathematical theories and algorithms
e Rich language supporting booleans, integers, tuples, arrays,- - -
e Provides automatic checking (by explicit evaluation)

e Based on a finite type system

https://www3.risc.jku.at/research/formal/software/RISCAL/

Foundations - RISCAL

43 RISC Algorithm Language (RISCAL)
File Edit Help SMT

6 pred isGCD(g nat,m nat,n"nat)

7requires m# 0 v n # 0,

8« divides(g,m) « divides(g,n)a

9-arnat. divides(r,m) 4 divides(r,n) A 1 > g
10
11theorem gcdO(m:nat) = m#0 = isGCD(m,m,0);
12theorem gedi(m:nat,nnat) = m 0 v n # 0

13" ag:nat. isGCD(g,m,n)AisGCD(g,n,m)

14

Operation: gdl(zz) v

RISC Algorithm Language 2.10.3 (October 1, 2019)

http://www risc jku.at/research/formal/software/RISCAL

(C) 2016-, Research Institute for Symbolic Computation (RISC)
This is free software distributed under the terms of the GNU GPL.
Execute "RISCAL -h" to see the available command line options

Reading file C:\Users\Franz\Desktop\ricsal\ged.tet

Using N=2
Type checking and translation completed.

File: C:A\Users\Franz\ Desktop\ricsal\ged.ot ‘Analysis Tasks
CEXO & » oo’ v gad1(Z2)
1valN Translation: ondeterminism Default Value: 0 Other Values:|] @ Execute operation
2type nat = N[N, Validate specification
3 Execution: ilent Inputs Per Mille Branches: Verify specification preconditions
4 pred divides(m:nat,n:nat) 3p:nat. mp = Parallelism: []Multi-Threaded ~ Threads: [Distributed ~ Servers:[5] v Verify correctness of result

. Is result correct?
Verify iteration and recursion
Verify implementation precondition

Reminder (multi-sorted) first order Logic.

Vx € A: Q(x) =3y € B: P(x,y)

e Quantifiers, variables

e Logical connectives

e Sort symbols A, B

e Operation symbols Q, P

We associate a meaning to such formulae by means of interpretations.

e We assign sets to the sort symbols.

e We assign functions to the operation symbols.

Satisfiability - Validity

A formula is:

e satisfiable iff there is an interpretation that makes it true.

e valid iff any interpretation makes it true.
Satisfiability and Validity are dual properties:

e A formula is valid iff its negation is unsatisfiable.

Satisfiability Modulo Theories (SMT) - Motivation

Consider the following formula f(1) < (1)

e In the usual context of mathematics we would consider this formula as incorrect.

e But this formula is satisfiable.

Conclusion: Restrict the considered interpretations

Satisfiability Modulo Theories

A theory denotes a class of interpretations.

Let T be a theory then a formula is:

e satisfiable modulo T iff there is an interpretation from T that makes it true.

e valid modulo T iff any interpretation from T makes it true.

Satisfiability Modulo Theories - Example

Lets come back to the motivating example: f(1) < f(1)

The theory of integers | contains only interpretations that:

e Assign the expected values to the constants 0,1,2,---

e Assign the expected meaning to the operations +, —, <, >, - --

f(1) < f(1) is unsatisfiable modulo /.

10

Satisfiability Modulo Theories - Quantifier free Theory of Bit Vectors

In this thesis we use the bit vector theory because:

e Bit vectors are well suited for modelling the RISCAL types.
e Similar to RISCAL all types in this theory are finite.

11

Satisfiability Modulo Theories - Quantifier free Theory of Bit Vectors

In this thesis we use the bit vector theory because:

e Bit vectors are well suited for modelling the RISCAL types.
e Similar to RISCAL all types in this theory are finite.

In this theory we have:

e Formulae contain no quantifiers.

e Sequences of arbitrary but fixed length, of zeroes and ones.
e Various operations including:

e Bitwise arithmetic operations

e Shift operations

11

SMT-LIB

SMT-LIB was founded in 2002 by Silvio Ranise and Cesare Tinelli.

SMT-LIB consists of three parts:

e A standardized description of theories.
e A collection of benchmarks for SMT solvers.

e An input and output language for SMT solvers.

For more information on SMT-LIB see http://smtlib.cs.uiowa.edu/

12

http://smtlib.cs.uiowa.edu/

SMT-LIB Example

(declare—fun x() (_ BitVec 4))
(define—fun y() (_ BitVec 4)#b0001)
(assert (not (bvule x (bvadd x y))))
(check—sat)

Applying the SMT-solver Boolector to this script yields the result satisfiable.
~> If we assign 1111 to x the asserted property holds.

13

The problem setting

Given a list of correct RISCAL declarations Dy, --- , D, and a RISCAL theorem Th

Check if Th is valid.

14

The problem setting

Given a list of correct RISCAL declarations Dy, --- , D, and a RISCAL theorem Th
Check if Th is valid.

We can model RISCAL declarations by formulae F1,--- , F,, and F which are
interpreted with respect to the RISCAL theory R

Thus we have to check whether all R interpretations that make Fi,--- F, true also
make F true. (i.e. F1,---,FnER F.)

14

The problem setting

We know

Fi,--- ,Fm E Fiff Nl_y F; = F is valid.

Similar we have for a theory T

Fi,---,Fm ET F iff Ai_y F; = F is valid modulo T.

Therefore we have to show that (Aj_; F;) = F is valid modulo R.
This is equivalent to showing that (Aj_; Fi) A =F is unsatisfiable modulo R.

15

The problem setting

Our goal is to find a translation W such that for any RISCAL-formula F the following
properties of W(F) are fulfilled:

e Contains no quantifiers

e V(F) is satisfiable modulo the bit vector theory iff F is satisfiable modulo R.

16

Quantifier Elimination

Unquantification Algorithm

Input: A formula Fy
Require: free(Fo) = ()
Output: A formula Fout
Ensure: Fy and F,,: are equisatisfiable with respect to the theory of RISCAL
Ensure: $p € Pos(Fout), x' € V,F' € L : Four(p) = Vox'F’
Ensure: fp € Pos(Fout),x' € V,F' € L : Four(p) = Iox'F’
: function UNQUANTIFY(Fp)
F1 +REMIMPEQU(Fp)
F> +SINKNEG(F1)
F3 < UNIQVARS(Fa, 0, bound(F))
(Fa, FS) +-SKOL(F3, getOpSyms(F3) U Opriscar U Opgy)
Fs +EXPALL(F4)
return Fg

P IFRPFRPRE

end function

17

Quantifier Elimination

Quantifier Expansion

Reminder: In RISCAL we have finite types.

Let T be a type and T = {t1,---, t,} then

o Vx €T :P(x)=A"1iP(t:).
e Ix € T:P(x)=Vi,P(t).

Example:

Vx € Z[0,2] : x <3~ (0<3)A(1<3)A(2<3)

18

Quantifier Elimination

Skolemisation

Preparatory steps:

e Removal of implications and equivalences
e Push negations inwards

e Rename variables

19

Quantifier Elimination

Skolemisation

Preparatory steps:

e Removal of implications and equivalences
e Push negations inwards

e Rename variables
After this preparatory steps we have to

e Determine the free variables in the respective expression.

e Find an unused operation symbol.

e Replace each occurrence of the quantified variable by the operation symbol
applied to the free variables.

19

Quantifier Elimination

Skolemisation

Preservation of satisfiability

e The preparatory steps preserve equality.

e The skolemised formula is satisfiable iff the original formula is satisfiable.

20

Quantifier Elimination

Skolemisation

Preservation of satisfiability

e The preparatory steps preserve equality.

e The skolemised formula is satisfiable iff the original formula is satisfiable.

Example: Vx € A: (Vy € B: P(x,y)) = Vx € C: Q(x)

First we rewrite this formula to:

Vx e A:(dy € B: =P(x,y))vVVz e C: Q(z)

The only free variable in 3y € B: =P(x,y) is y therefore we get
Vx € A: =P(x,f(x))VVz e C: Q(z)

20

Theory Translations

Booleans

e Logical connectives are available in both theories.

e We will deal with special predicates (like <,>) when we discuss the translation of
the types of the predicate’s arguments.

21

Theory Translations

Integers

There is a close relation between bit vectors and integers.

Let b be a bit vector of length n then we assign integers to bit vectors in the following
ways:

e Signed Representation: —b[n] - 2" 4 S-"= 1 b[i] - 2
e Unsigned Representation: > ; b[i] - 2

22

Theory Translations

Integers

For several integer operations in the RISCAL theory there are related operations in the
bit vector theory. (e.g. +,—, <,>,)

Especially two problems arise:

e The operations from the bit vector theory require arguments of the same length.

e The arithmetic operations from the bit vector theory correspond to modular

integer arithmetic.

Example: Consider the expression 4 + 1 from the RISCAL theory. We can associate 4
to the bit vector 100 and 1 to the bit vector 1.
~» There is no addition function for arguments of different lengths.

23

Theory Translations

Integers

Solution to the problems: Find an appropriate vector length and associate the integers
to bitvectors of this length.

For an RISCAL integer expression we determine

e The vector length necessary to represent the expression itself.

e The vector lengths necessary to represent the integer sub expressions.

We use the maximum of these lengths as the length of our bit vectors

24

Theory Translations

Integers

Example: 8 — (4 +4)

e We need a vector of length 1 to represent 0 =8 — (4 + 4)
e We need a vector of length 4 to represent 8

e We need a vector of length 3 to represent 4

Thus we use bit vectors of length 4 i.e. (bvsub 1000 (bvadd 0100 0100))

23

Theory Translations

Integers

Example: 8 — (4 +4)

e We need a vector of length 1 to represent 0 =8 — (4 + 4)
e We need a vector of length 4 to represent 8

e We need a vector of length 3 to represent 4
Thus we use bit vectors of length 4 i.e. (bvsub 1000 (bvadd 0100 0100))
This procedure ensures that

e The arguments of functions have the same length.

e No overflows occur.

23

Translation - Example

val N: N;
type nat = N[N];

pred divides(m:nat,n:nat) < 3p:nat. m-p = n;
pred isGCD(g:nat,m:nat,n:nat)
requires m# 0 V n # 0;

< divides(g,m) A divides(g,n)A=3r:nat. divides(r,m) A divides(r,n) A r > g;

theorem gcdO(m:nat) < m#0 = isGCD(m,m,0);
theorem gcdl(m:nat,n:nat) < m % 0 V n # 0= 3g:nat. isGCD(g,m,n)AisGCD(g,n,m);

We want to show that the theorem gcdl holds.

26

Translation - Example

(set—logic QF_UFBV)

(define—fun N () (_ BitVec 2) #bl10)

(define—sort nat ()(_ BitVec 2))

(define—fun divides ((m (_ BitVec 2)) (n (_ BitVec 2)))Bool (or (let ((p #b00)) (= (bvmul ((_
zero_extend 1) m) ((_ zero_extend 1) p)) ((_ zero_extend 1) n))) (let ((p #b01l)) (= (bvmul ((_
zero_extend 1) m) ((_ zero_extend 1) p)) ((_ zero_extend 1) n))) (let ((p #b10)) (= (bvmul ((_
zero_extend 1) m) ((_ zero_extend 1) p)) ((_ zero_extend 1) n)))))

(define—fun isGCD ((g (_ BitVec 2)) (m (_ BitVec 2)) (n (_ BitVec 2)))Bool (and (and (divides g m) (
divides g n)) (and (let ((r #b00)) (or (or (not (divides r m)) (not (divides r n))) (bvule r g)))
(let ((r #b01)) (or (or (not (divides r m)) (not (divides r n))) (bvule r g))) (let ((r #bl0)) (or

(or (not (divides r m)) (not (divides r n))) (bvule r g))))))

(declare—fun f ()(_ BitVec 2))

(assert (and (bvule #b00 f) (bvuge #bl10 f)))

(declare—fun f_1 ()(_ BitVec 2))

(assert (and (bvule #b00 f_1) (bvuge #bl0 f_1)))

(assert (let ((m f))(let ((n f_1))(let ((result (or (and (= m #b00) (= n #b00)) (or (let ((g #b00)) (
and (isGCD g m n) (isGCD g nm))) (let ((g #b01)) (and (isGCD g m n) (isGCD g n m))) (let ((g #bl0
)) (and (isGCD g m n) (isGCD g nm))))))) (not result)))))

(check—sat) (exit)

Applying the SMT-solver Boolector to this script yields the result unsatisfiable.

27

Future Work - Conclusion

Remaining work:

e Essentially the program is finished. The search for potential bugs remains.

e The remaining theories need to be formalized.

e Tests with the program have to be conducted in order to compare its performance
with the performance of the existing checking mechanism.

Preliminary conclusion:

e Tests of the program already indicate that in certain cases the SMT solvers are
much faster than the current evaluation mechanism.

e But the tests also indicate that for certain cases the SMT solver approach is much
slower.

28

