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Motivation and Aim of the Thesis

e Elaboration of an alternative way of checking RISCAL formulae.
e Translation of the RISCAL language to SMT-LIB
e Application of an SMT solver

e Increase the efficiency of checking formulae.

e Other specification languages already use such translations.
e JML - OpenJML
o TLA+
e Event-B



RISC Algorithm Language - RISCAL

e Specification language developed by Prof. Schreiner at RISC

e RISCAL is freely available at
https://www3.risc. jku.at/research/formal/software/RISCAL/

e Supports the specification of both mathematical theories and algorithms
e Rich language supporting booleans, integers, tuples, arrays,- - -
e Provides automatic checking (by explicit evaluation)

e Based on a finite type system


https://www3.risc.jku.at/research/formal/software/RISCAL/

Foundations - RISCAL

43 RISC Algorithm Language (RISCAL)
File Edit Help SMT

6 pred isGCD(g nat,m nat,n"nat)

7requires m# 0 v n # 0,

8« divides(g,m) « divides(g,n)a

9-arnat. divides(r,m) 4 divides(r,n) A 1 > g
10
11theorem gcdO(m:nat) = m#0 = isGCD(m,m,0);
12theorem gedi(m:nat,nnat) = m 0 v n # 0

13" ag:nat. isGCD(g,m,n)AisGCD(g,n,m)
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Operation: gdl(zz) v

RISC Algorithm Language 2.10.3 (October 1, 2019)

http://www risc jku.at/research/formal/software/RISCAL

(C) 2016-, Research Institute for Symbolic Computation (RISC)
This is free software distributed under the terms of the GNU GPL.
Execute "RISCAL -h" to see the available command line options

Reading file C:\Users\Franz\Desktop\ricsal\ged.tet

Using N=2
Type checking and translation completed.

File: C:A\Users\Franz\ Desktop\ricsal\ged.ot ‘Analysis Tasks
CEXO & » oo’ v gad1(Z2)
1valN Translation: ondeterminism  Default Value: 0 Other Values:| ] @ Execute operation
2type nat = N[N, Validate specification
3 Execution: ilent  Inputs Per Mille Branches: Verify specification preconditions
4 pred divides(m:nat,n:nat)  3p:nat. mp = Parallelism: []Multi-Threaded ~ Threads: [ Distributed ~ Servers:[ 5] v Verify correctness of result

. Is result correct?
Verify iteration and recursion
Verify implementation precondition




Reminder (multi-sorted) first order Logic.

Vx € A: Q(x) =3y € B: P(x,y)

e Quantifiers, variables

e Logical connectives

e Sort symbols A, B

e Operation symbols Q, P

We associate a meaning to such formulae by means of interpretations.

e We assign sets to the sort symbols.

e We assign functions to the operation symbols.



Satisfiability - Validity

A formula is:

e satisfiable iff there is an interpretation that makes it true.

e valid iff any interpretation makes it true.
Satisfiability and Validity are dual properties:

e A formula is valid iff its negation is unsatisfiable.



Satisfiability Modulo Theories (SMT) - Motivation

Consider the following formula f(1) < (1)

e In the usual context of mathematics we would consider this formula as incorrect.

e But this formula is satisfiable.

Conclusion: Restrict the considered interpretations



Satisfiability Modulo Theories

A theory denotes a class of interpretations.

Let T be a theory then a formula is:

e satisfiable modulo T iff there is an interpretation from T that makes it true.

e valid modulo T iff any interpretation from T makes it true.



Satisfiability Modulo Theories - Example

Lets come back to the motivating example: f(1) < f(1)

The theory of integers | contains only interpretations that:

e Assign the expected values to the constants 0,1,2,---

e Assign the expected meaning to the operations +, —, <, >, - --

f(1) < f(1) is unsatisfiable modulo /.
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Satisfiability Modulo Theories - Quantifier free Theory of Bit Vectors

In this thesis we use the bit vector theory because:

e Bit vectors are well suited for modelling the RISCAL types.
e Similar to RISCAL all types in this theory are finite.

11



Satisfiability Modulo Theories - Quantifier free Theory of Bit Vectors

In this thesis we use the bit vector theory because:

e Bit vectors are well suited for modelling the RISCAL types.
e Similar to RISCAL all types in this theory are finite.

In this theory we have:

e Formulae contain no quantifiers.

e Sequences of arbitrary but fixed length, of zeroes and ones.
e Various operations including:

e Bitwise arithmetic operations

e Shift operations
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SMT-LIB

SMT-LIB was founded in 2002 by Silvio Ranise and Cesare Tinelli.

SMT-LIB consists of three parts:

e A standardized description of theories.
e A collection of benchmarks for SMT solvers.

e An input and output language for SMT solvers.

For more information on SMT-LIB see http://smtlib.cs.uiowa.edu/

12


http://smtlib.cs.uiowa.edu/

SMT-LIB Example

(declare—fun x() (_ BitVec 4))
(define—fun y() (_ BitVec 4)#b0001)
(assert (not (bvule x (bvadd x y))))
(check—sat)

Applying the SMT-solver Boolector to this script yields the result satisfiable.
~> If we assign 1111 to x the asserted property holds.
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The problem setting

Given a list of correct RISCAL declarations Dy, --- , D, and a RISCAL theorem Th

Check if Th is valid.

14



The problem setting

Given a list of correct RISCAL declarations Dy, --- , D, and a RISCAL theorem Th
Check if Th is valid.

We can model RISCAL declarations by formulae F1,--- , F,, and F which are
interpreted with respect to the RISCAL theory R

Thus we have to check whether all R interpretations that make Fi,--- F, true also
make F true. (i.e. F1,---,FnER F.)
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The problem setting

We know

Fi,--- ,Fm E Fiff Nl_y F; = F is valid.

Similar we have for a theory T

Fi,---,Fm ET F iff Ai_y F; = F is valid modulo T.

Therefore we have to show that (Aj_; F;) = F is valid modulo R.
This is equivalent to showing that (Aj_; Fi) A =F is unsatisfiable modulo R.
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The problem setting

Our goal is to find a translation W such that for any RISCAL-formula F the following
properties of W(F) are fulfilled:

e Contains no quantifiers

e V(F) is satisfiable modulo the bit vector theory iff F is satisfiable modulo R.
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Quantifier Elimination

Unquantification Algorithm

Input: A formula Fy
Require: free(Fo) = ()
Output: A formula Fout
Ensure: Fy and F,,: are equisatisfiable with respect to the theory of RISCAL
Ensure: $p € Pos(Fout), x' € V,F' € L : Four(p) = Vox'F’
Ensure: fp € Pos(Fout),x' € V,F' € L : Four(p) = Iox'F’
: function UNQUANTIFY(Fp)
F1 +REMIMPEQU(Fp)
F> +SINKNEG(F1)
F3 < UNIQVARS(Fa, 0, bound(F))
(Fa, FS) +-SKOL(F3, getOpSyms(F3) U Opriscar U Opgy)
Fs +EXPALL(F4)
return Fg

P IFRPFRPRE

end function
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Quantifier Elimination

Quantifier Expansion

Reminder: In RISCAL we have finite types.

Let T be a type and T = {t1,---, t,} then

o Vx €T :P(x)=A"1iP(t:).
e Ix € T:P(x)=Vi,P(t).

Example:

Vx € Z[0,2] : x <3~ (0<3)A(1<3)A(2<3)
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Quantifier Elimination

Skolemisation

Preparatory steps:

e Removal of implications and equivalences
e Push negations inwards

e Rename variables

19



Quantifier Elimination

Skolemisation

Preparatory steps:

e Removal of implications and equivalences
e Push negations inwards

e Rename variables
After this preparatory steps we have to

e Determine the free variables in the respective expression.

e Find an unused operation symbol.

e Replace each occurrence of the quantified variable by the operation symbol
applied to the free variables.
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Quantifier Elimination

Skolemisation

Preservation of satisfiability

e The preparatory steps preserve equality.

e The skolemised formula is satisfiable iff the original formula is satisfiable.
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Quantifier Elimination

Skolemisation

Preservation of satisfiability

e The preparatory steps preserve equality.

e The skolemised formula is satisfiable iff the original formula is satisfiable.

Example: Vx € A: (Vy € B: P(x,y)) = Vx € C: Q(x)

First we rewrite this formula to:

Vx e A:(dy € B: =P(x,y))vVVz e C: Q(z)

The only free variable in 3y € B: =P(x,y) is y therefore we get
Vx € A: =P(x,f(x))VVz e C: Q(z)
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Theory Translations

Booleans

e Logical connectives are available in both theories.

e We will deal with special predicates (like <,>) when we discuss the translation of
the types of the predicate’s arguments.
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Theory Translations

Integers

There is a close relation between bit vectors and integers.

Let b be a bit vector of length n then we assign integers to bit vectors in the following
ways:

e Signed Representation: —b[n] - 2" 4 S-"= 1 b[i] - 2
e Unsigned Representation: > ; b[i] - 2

22



Theory Translations

Integers

For several integer operations in the RISCAL theory there are related operations in the
bit vector theory. (e.g. +,—, <,>, )

Especially two problems arise:

e The operations from the bit vector theory require arguments of the same length.

e The arithmetic operations from the bit vector theory correspond to modular

integer arithmetic.

Example: Consider the expression 4 + 1 from the RISCAL theory. We can associate 4
to the bit vector 100 and 1 to the bit vector 1.
~» There is no addition function for arguments of different lengths.
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Theory Translations

Integers

Solution to the problems: Find an appropriate vector length and associate the integers
to bitvectors of this length.

For an RISCAL integer expression we determine

e The vector length necessary to represent the expression itself.

e The vector lengths necessary to represent the integer sub expressions.

We use the maximum of these lengths as the length of our bit vectors

24



Theory Translations

Integers

Example: 8 — (4 +4)

e We need a vector of length 1 to represent 0 =8 — (4 + 4)
e We need a vector of length 4 to represent 8

e We need a vector of length 3 to represent 4

Thus we use bit vectors of length 4 i.e. (bvsub 1000 (bvadd 0100 0100))
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Theory Translations

Integers

Example: 8 — (4 +4)

e We need a vector of length 1 to represent 0 =8 — (4 + 4)
e We need a vector of length 4 to represent 8

e We need a vector of length 3 to represent 4
Thus we use bit vectors of length 4 i.e. (bvsub 1000 (bvadd 0100 0100))
This procedure ensures that

e The arguments of functions have the same length.

e No overflows occur.
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Translation - Example

val N: N;
type nat = N[N];

pred divides(m:nat,n:nat) < 3p:nat. m-p = n;
pred isGCD(g:nat,m:nat,n:nat)
requires m# 0 V n # 0;

< divides(g,m) A divides(g,n)A=3r:nat. divides(r,m) A divides(r,n) A r > g;

theorem gcdO(m:nat) < m#0 = isGCD(m,m,0);
theorem gcdl(m:nat,n:nat) < m % 0 V n # 0= 3g:nat. isGCD(g,m,n)AisGCD(g,n,m);

We want to show that the theorem gcdl holds.
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Translation - Example

(set—logic QF_UFBV)

(define—fun N () (_ BitVec 2) #bl10)

(define—sort nat ()(_ BitVec 2))

(define—fun divides ((m (_ BitVec 2)) (n (_ BitVec 2)))Bool (or (let ((p #b00)) (= (bvmul ((_
zero_extend 1) m) ((_ zero_extend 1) p)) ((_ zero_extend 1) n))) (let ((p #b01l)) (= (bvmul ((_
zero_extend 1) m) ((_ zero_extend 1) p)) ((_ zero_extend 1) n))) (let ((p #b10)) (= (bvmul ((_
zero_extend 1) m) ((_ zero_extend 1) p)) ((_ zero_extend 1) n)))))

(define—fun isGCD ((g (_ BitVec 2)) (m (_ BitVec 2)) (n (_ BitVec 2)))Bool (and (and (divides g m) (
divides g n)) (and (let ((r #b00)) (or (or (not (divides r m)) (not (divides r n))) (bvule r g)))
(let ((r #b01)) (or (or (not (divides r m)) (not (divides r n))) (bvule r g))) (let ((r #bl0)) (or

(or (not (divides r m)) (not (divides r n))) (bvule r g))))))

(declare—fun f ()(_ BitVec 2))

(assert (and (bvule #b00 f) (bvuge #bl10 f)))

(declare—fun f_1 ()(_ BitVec 2))

(assert (and (bvule #b00 f_1) (bvuge #bl0 f_1)))

(assert (let ((m f))(let ((n f_1))(let (( result (or (and (= m #b00) (= n #b00)) (or (let ((g #b00)) (
and (isGCD g m n) (isGCD g nm))) (let ((g #b01)) (and (isGCD g m n) (isGCD g n m))) (let ((g #bl0
)) (and (isGCD g m n) (isGCD g nm))))))) (not result)))))

(check—sat) (exit)

Applying the SMT-solver Boolector to this script yields the result unsatisfiable.
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Future Work - Conclusion

Remaining work:

e Essentially the program is finished. The search for potential bugs remains.

e The remaining theories need to be formalized.

e Tests with the program have to be conducted in order to compare its performance
with the performance of the existing checking mechanism.

Preliminary conclusion:

e Tests of the program already indicate that in certain cases the SMT solvers are
much faster than the current evaluation mechanism.

e But the tests also indicate that for certain cases the SMT solver approach is much
slower.
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