
The Integration of SMT Solvers into the
RISCAL Model Checker
First Master Thesis Report

Franz Reichl
October 31, 2019

1

Overview

• Motivation and Aim for the Thesis
• Foundations
• Setting of the Problem
• Quantifier Elimination
• Theory Translations
• Conclusion & Current Work

2

Motivation and Aim of the Thesis

• Elaboration of an alternative way of checking RISCAL formulae.
• Translation of the RISCAL language to SMT-LIB
• Application of an SMT solver

• Increase the efficiency of checking formulae.
• Other specification languages already use such translations.

• JML - OpenJML
• TLA+
• Event-B

3

Foundations

RISC Algorithm Language - RISCAL

• Specification language developed by Prof. Schreiner at RISC
• RISCAL is freely available at

https://www3.risc.jku.at/research/formal/software/RISCAL/

• Supports the specification of both mathematical theories and algorithms
• Rich language supporting booleans, integers, tuples, arrays,· · ·
• Provides automatic checking (by explicit evaluation)
• Based on a finite type system

4

https://www3.risc.jku.at/research/formal/software/RISCAL/

Foundations - RISCAL

5

Foundations

Reminder (multi-sorted) first order Logic.

∀x ∈ A : Q(x)⇒ ∃y ∈ B : P(x , y)

• Quantifiers, variables
• Logical connectives
• Sort symbols A,B
• Operation symbols Q,P

We associate a meaning to such formulae by means of interpretations.

• We assign sets to the sort symbols.
• We assign functions to the operation symbols.

6

Foundations

Satisfiability - Validity

A formula is:

• satisfiable iff there is an interpretation that makes it true.
• valid iff any interpretation makes it true.

Satisfiability and Validity are dual properties:

• A formula is valid iff its negation is unsatisfiable.

7

Foundations

Satisfiability Modulo Theories (SMT) - Motivation

Consider the following formula f (1) < f (1)

• In the usual context of mathematics we would consider this formula as incorrect.
• But this formula is satisfiable.

Conclusion: Restrict the considered interpretations

8

Foundations

Satisfiability Modulo Theories

A theory denotes a class of interpretations.

Let T be a theory then a formula is:

• satisfiable modulo T iff there is an interpretation from T that makes it true.
• valid modulo T iff any interpretation from T makes it true.

9

Foundations

Satisfiability Modulo Theories - Example

Lets come back to the motivating example: f (1) < f (1)

The theory of integers I contains only interpretations that:

• Assign the expected values to the constants 0, 1, 2, · · ·
• Assign the expected meaning to the operations +,−, <, >, · · ·

f (1) < f (1) is unsatisfiable modulo I.

10

Foundations

Satisfiability Modulo Theories - Quantifier free Theory of Bit Vectors

In this thesis we use the bit vector theory because:

• Bit vectors are well suited for modelling the RISCAL types.
• Similar to RISCAL all types in this theory are finite.

In this theory we have:

• Formulae contain no quantifiers.
• Sequences of arbitrary but fixed length, of zeroes and ones.
• Various operations including:

• Bitwise arithmetic operations
• Shift operations

11

Foundations

Satisfiability Modulo Theories - Quantifier free Theory of Bit Vectors

In this thesis we use the bit vector theory because:

• Bit vectors are well suited for modelling the RISCAL types.
• Similar to RISCAL all types in this theory are finite.

In this theory we have:

• Formulae contain no quantifiers.
• Sequences of arbitrary but fixed length, of zeroes and ones.
• Various operations including:

• Bitwise arithmetic operations
• Shift operations

11

Foundations

SMT-LIB

SMT-LIB was founded in 2002 by Silvio Ranise and Cesare Tinelli.

SMT-LIB consists of three parts:

• A standardized description of theories.
• A collection of benchmarks for SMT solvers.
• An input and output language for SMT solvers.

For more information on SMT-LIB see http://smtlib.cs.uiowa.edu/

12

http://smtlib.cs.uiowa.edu/

Foundations

SMT-LIB Example

(declare−fun x() (_ BitVec 4))
(define−fun y() (_ BitVec 4)#b0001)
(assert (not (bvule x (bvadd x y))))

(check−sat)

Applying the SMT-solver Boolector to this script yields the result satisfiable.
 If we assign 1111 to x the asserted property holds.

13

The problem setting

Given a list of correct RISCAL declarations D1, · · · ,Dn and a RISCAL theorem Th

Check if Th is valid.

We can model RISCAL declarations by formulae F1, · · · ,Fm and F which are
interpreted with respect to the RISCAL theory R

Thus we have to check whether all R interpretations that make F1, · · ·Fn true also
make F true. (i.e. F1, · · · ,Fm �R F .)

14

The problem setting

Given a list of correct RISCAL declarations D1, · · · ,Dn and a RISCAL theorem Th

Check if Th is valid.

We can model RISCAL declarations by formulae F1, · · · ,Fm and F which are
interpreted with respect to the RISCAL theory R

Thus we have to check whether all R interpretations that make F1, · · ·Fn true also
make F true. (i.e. F1, · · · ,Fm �R F .)

14

The problem setting

We know

F1, · · · ,Fm � F iff
∧n

i=1 Fi ⇒ F is valid.

Similar we have for a theory T

F1, · · · ,Fm �T F iff
∧n

i=1 Fi ⇒ F is valid modulo T .

Therefore we have to show that (
∧n

i=1 Fi)⇒ F is valid modulo R.
This is equivalent to showing that (

∧n
i=1 Fi) ∧ ¬F is unsatisfiable modulo R.

15

The problem setting

Our goal is to find a translation Ψ such that for any RISCAL-formula F the following
properties of Ψ(F) are fulfilled:

• Contains no quantifiers
• Ψ(F) is satisfiable modulo the bit vector theory iff F is satisfiable modulo R.

16

Quantifier Elimination

Unquantification Algorithm

Input: A formula F0

Require: free(F0) = ∅
Output: A formula Fout

Ensure: F0 and Fout are equisatisfiable with respect to the theory of RISCAL
Ensure: @p ∈ Pos(Fout), x i ∈ V,F ′ ∈ L : Fout〈p〉 = ∀Lx iF ′

Ensure: @p ∈ Pos(Fout), x i ∈ V,F ′ ∈ L : Fout〈p〉 = ∃Lx iF ′

1: function Unquantify(F0)
2: F1 ←RemImpEqu(F0)
3: F2 ←SinkNeg(F1)
4: F3 ←UniQVars(F2, ∅, bound(F))
5: (F4,FS)←Skol(F3, getOpSyms(F3) ∪ OpRISCAL ∪ OpBV)
6: F5 ←ExpAll(F4)
7: return F5

8: end function

17

Quantifier Elimination

Quantifier Expansion

Reminder: In RISCAL we have finite types.

Let T be a type and T = {t1, · · · , tn} then

• ∀x ∈ T : P(x) ≡
∧n

i=1 P(ti).
• ∃x ∈ T : P(x) ≡

∨n
i=1 P(ti).

Example:

∀x ∈ Z[0, 2] : x < 3 (0 < 3) ∧ (1 < 3) ∧ (2 < 3)

18

Quantifier Elimination

Skolemisation

Preparatory steps:

• Removal of implications and equivalences
• Push negations inwards
• Rename variables

After this preparatory steps we have to

• Determine the free variables in the respective expression.
• Find an unused operation symbol.
• Replace each occurrence of the quantified variable by the operation symbol
applied to the free variables.

19

Quantifier Elimination

Skolemisation

Preparatory steps:

• Removal of implications and equivalences
• Push negations inwards
• Rename variables

After this preparatory steps we have to

• Determine the free variables in the respective expression.
• Find an unused operation symbol.
• Replace each occurrence of the quantified variable by the operation symbol
applied to the free variables.

19

Quantifier Elimination

Skolemisation

Preservation of satisfiability

• The preparatory steps preserve equality.
• The skolemised formula is satisfiable iff the original formula is satisfiable.

Example: ∀x ∈ A : (∀y ∈ B : P(x , y))⇒ ∀x ∈ C : Q(x)
First we rewrite this formula to:
∀x ∈ A : (∃y ∈ B : ¬P(x , y)) ∨ ∀z ∈ C : Q(z)
The only free variable in ∃y ∈ B : ¬P(x , y) is y therefore we get
∀x ∈ A : ¬P(x , f (x)) ∨ ∀z ∈ C : Q(z)

20

Quantifier Elimination

Skolemisation

Preservation of satisfiability

• The preparatory steps preserve equality.
• The skolemised formula is satisfiable iff the original formula is satisfiable.

Example: ∀x ∈ A : (∀y ∈ B : P(x , y))⇒ ∀x ∈ C : Q(x)
First we rewrite this formula to:
∀x ∈ A : (∃y ∈ B : ¬P(x , y)) ∨ ∀z ∈ C : Q(z)
The only free variable in ∃y ∈ B : ¬P(x , y) is y therefore we get
∀x ∈ A : ¬P(x , f (x)) ∨ ∀z ∈ C : Q(z)

20

Theory Translations

Booleans

• Logical connectives are available in both theories.
• We will deal with special predicates (like <, >) when we discuss the translation of

the types of the predicate’s arguments.

21

Theory Translations

Integers

There is a close relation between bit vectors and integers.

Let b be a bit vector of length n then we assign integers to bit vectors in the following
ways:

• Signed Representation: −b[n] · 2n +
∑n−1

i=1 b[i] · 2i

• Unsigned Representation:
∑n

i=1 b[i] · 2i

22

Theory Translations

Integers

For several integer operations in the RISCAL theory there are related operations in the
bit vector theory. (e.g. +,−, <, >, · · ·)

Especially two problems arise:

• The operations from the bit vector theory require arguments of the same length.
• The arithmetic operations from the bit vector theory correspond to modular
integer arithmetic.

Example: Consider the expression 4 + 1 from the RISCAL theory. We can associate 4
to the bit vector 100 and 1 to the bit vector 1.
 There is no addition function for arguments of different lengths.

23

Theory Translations

Integers

Solution to the problems: Find an appropriate vector length and associate the integers
to bitvectors of this length.

For an RISCAL integer expression we determine

• The vector length necessary to represent the expression itself.
• The vector lengths necessary to represent the integer sub expressions.

We use the maximum of these lengths as the length of our bit vectors

24

Theory Translations

Integers

Example: 8− (4 + 4)

• We need a vector of length 1 to represent 0 = 8− (4 + 4)
• We need a vector of length 4 to represent 8
• We need a vector of length 3 to represent 4

Thus we use bit vectors of length 4 i.e. (bvsub 1000 (bvadd 0100 0100))

This procedure ensures that

• The arguments of functions have the same length.
• No overflows occur.

25

Theory Translations

Integers

Example: 8− (4 + 4)

• We need a vector of length 1 to represent 0 = 8− (4 + 4)
• We need a vector of length 4 to represent 8
• We need a vector of length 3 to represent 4

Thus we use bit vectors of length 4 i.e. (bvsub 1000 (bvadd 0100 0100))

This procedure ensures that

• The arguments of functions have the same length.
• No overflows occur.

25

Translation - Example

v a l N: N ;
t ype nat = N [N] ;

p red d i v i d e s (m: nat , n : nat) ⇔ ∃p : nat . m· p = n ;

pred isGCD (g : nat ,m: nat , n : nat)
r e q u i r e s m 6= 0 ∨ n 6= 0 ;
⇔ d i v i d e s (g ,m) ∧ d i v i d e s (g , n)∧¬∃r : nat . d i v i d e s (r ,m) ∧ d i v i d e s (r , n) ∧ r > g ;

theorem gcd0 (m: nat) ⇔m6=0 ⇒ isGCD (m,m, 0) ;
theorem gcd1 (m: nat , n : nat) ⇔m 6= 0 ∨ n 6= 0 ⇒ ∃g : nat . isGCD (g ,m, n)∧isGCD (g , n ,m) ;

We want to show that the theorem gcd1 holds.

26

Translation - Example

(se t−l o g i c QF_UFBV)
(d e f i n e−fun N () (_ BitVec 2) #b10)
(d e f i n e−s o r t nat () (_ BitVec 2))
(d e f i n e−fun d i v i d e s ((m (_ BitVec 2)) (n (_ BitVec 2))) Bool (o r (l e t ((p #b00)) (= (bvmul ((_

ze ro_extend 1) m) ((_ ze ro_extend 1) p)) ((_ ze ro_extend 1) n))) (l e t ((p #b01)) (= (bvmul ((_
ze ro_extend 1) m) ((_ ze ro_extend 1) p)) ((_ ze ro_extend 1) n))) (l e t ((p #b10)) (= (bvmul ((_
ze ro_extend 1) m) ((_ ze ro_extend 1) p)) ((_ ze ro_extend 1) n)))))

(d e f i n e−fun isGCD ((g (_ BitVec 2)) (m (_ BitVec 2)) (n (_ BitVec 2))) Bool (and (and (d i v i d e s g m) (
d i v i d e s g n)) (and (l e t ((r #b00)) (o r (o r (not (d i v i d e s r m)) (not (d i v i d e s r n))) (b v u l e r g)))
(l e t ((r #b01)) (o r (o r (not (d i v i d e s r m)) (not (d i v i d e s r n))) (b v u l e r g))) (l e t ((r #b10)) (o r

(o r (not (d i v i d e s r m)) (not (d i v i d e s r n))) (b v u l e r g))))))
(d e c l a r e−fun f () (_ BitVec 2))
(a s s e r t (and (b v u l e #b00 f) (bvuge #b10 f)))
(d e c l a r e−fun f_1 () (_ BitVec 2))
(a s s e r t (and (b v u l e #b00 f_1) (bvuge #b10 f_1)))
(a s s e r t (l e t ((m f)) (l e t ((n f_1)) (l e t ((r e s u l t (o r (and (= m #b00) (= n #b00)) (o r (l e t ((g #b00)) (

and (isGCD g m n) (isGCD g n m))) (l e t ((g #b01)) (and (isGCD g m n) (isGCD g n m))) (l e t ((g #b10
)) (and (isGCD g m n) (isGCD g n m))))))) (not r e s u l t)))))

(check−s a t) (e x i t)

Applying the SMT-solver Boolector to this script yields the result unsatisfiable.

27

Future Work - Conclusion

Remaining work:

• Essentially the program is finished. The search for potential bugs remains.
• The remaining theories need to be formalized.
• Tests with the program have to be conducted in order to compare its performance
with the performance of the existing checking mechanism.

Preliminary conclusion:

• Tests of the program already indicate that in certain cases the SMT solvers are
much faster than the current evaluation mechanism.

• But the tests also indicate that for certain cases the SMT solver approach is much
slower.

28

