
Refinement Types for Elm
Master Thesis Report

Lucas Payr
30 Oktober 2019

1

Background: Elm Programming Language

• Invented by Evan Czaplicki as his master-thesis in 2012.
• Goal: Bring Function Programming to Web-Development
• Side-Goal: Learning-friendly design decisions
• Website: elm-lang.org

Characteristics

• Pure Functional Language (immutable, no side effect,
everything is a function)

• Compiles to JavaScript (in the future also to WebAssembly)
• ML-like Syntax (we say fun a b c for fun(a, b, c))
• Simpler than Haskell (no Type classes, no Monads, only one

way to do a given thing)
• “No Runtimes errors” (running out of memory, function equality

and non-terminating functions still give runtime errors.)
2

Background: The Elm Architecture

3

Background: The Elm Architecture

Example
• Online Editor: ellie-app.com

4

Background: Refinement Types

Restricts the values of an existing type using a predicate.

Initial paper in 1991 by Tim Freeman and Frank Pfenning

• Initial concept was done in ML.
• Allows predicates with only ∧,∨,=, constants and basic

pattern matching.
• Operates over algebraic types.
• Needed to specify explicitly all possible Values.

Example
{a : (Bool ,Bool)| a = (True,False) ∨ a = (False,True)}

∀t.{a : List t|a = Cons (b : t) (c : List t) ∧ c = Cons (d : t) []}

5

Background: Liquid Types

Liquid Types (Logically Quantified Data Types) introduced in 2008

• Invented by Patrick Rondan, Ming Kawaguchi and Ranji Jhala
• Initial concept done in OCaml. Later also C, Haskell and

TypeScript.
• Operates over Integers and Booleans. Later also Tuples and

Functions.
• Allows predicates with logical operators, comparisons and

addition.

Example
{(a : Bool , b : Bool)|(a ∨ b) ∧ ¬(a ∧ b)}

{(a : Int, b : Int)|a ≤ b}

6

Goals of Thesis

1. Formal language similar to Elm
1.1 A formal syntax
1.2 A formal type system
1.3 A denotational semantic
1.4 A small step semantic (using K Framework) for rapid

prototyping the language
1.5 Proof that the type system is valid with respect to the

semantics.
2. Extension of the formal language with Liquid Types

2.1 A formal syntax
2.2 A formal type system
2.3 A denotational semantic
2.4 A small step semantic (using K Framework) for rapid

prototyping the type checker
2.5 Proof that the extension infers the correct types.

3. A type checker implementation written in Elm for Elm. 7

Problems Addressed by the Type System

• Division by zero errors
• Off by one errors
• Proving the correctness of very simple programs
• Clearer interfaces

8

Theory: Formalization of the Elm Type System

We will use the Hindley-Milner type system (used in ML, Haskell
and Elm)

We say

T is a mono type :⇔ T is a type variable
∨ T is a type application
∨ T is a algebraic type
∨ T is a product type
∨ T is a function type

T is a poly type :⇔ T = ∀a.T ′

where T ′ is a mono type or poly type
and a is a symbol

T is a type :⇔ T is a mono type ∨ T is a poly type.
9

Theory: Formalization of the Elm Type System

Example

1. Nat ::= µC .1 | Succ C
2. List = ∀a.µC .Empty | Cons a C
3. splitAt : ∀a.Nat → List a→ (List a, List a)

10

Theory: Formalization of the Elm Type System

The values of a type is the set corresponding to the type:

values(Nat) = {1,Succ 1,Succ Succ 1, . . . }

values(List Nat) =
⋃

n∈N
valuesn(List Nat)

values0(List Nat) = {[]}

valuesn(List Nat) =
{[]} ∪ {Cons a b|a ∈ values(Nat), b ∈ valuesn−1(List Nat)}

11

Theory: Definition of Liquid Types

Definition (Sketch)
Let T be a Type Application of Int, tuples and functions. Let q be
a logical formula consisting of

• Logical operations: ¬,∧,∨
• Logical constants: True,False
• Comparisons: <,≤,=, 6=
• Integer operations: +, ·c where c is a constant
• Integer constants: 0, 3, 42, . . .
• Bound variables: a, b, c, . . .

Then we call the syntactic phrase {a : T |q(a)} a Liquid Type.

12

Theory: Definition of Liquid Types

Example
Let Nat = {a : Int|a > 0} in

{ {(a : Nat, b : Nat) |a + b < 42} → {(c : Nat, d : Nat)|c ≤ d}
| (a = c ∧ b = d) ∨ (b = c ∧ a = d)
}

13

Theory: Revisiting the Problems

• Division by zero errors

(/) : Int → {a : Int|a 6= 0} → Int

• Off by one errors

Let Pos = {a : Int|0 ≤ a ∧ a < 8} in
get : (Pos,Pos)→ Chessboard → Maybe Figure

• Proving the correctness of very simple programs

swap : {(a : Int, b : Int)→ (c : Int, d : Int)|b = c ∧ a = d}

• Clearer interfaces

length : List a→ {a : Int|a ≥ 0}

14

Current State

1. Formal language similar to Elm
1.1 A formal syntax (DONE)
1.2 A formal type system (DONE)
1.3 A denotational semantic (WORK IN PROGRESS)
1.4 A small step semantic (using K Framework) for rapid

prototyping the language
1.5 Proof that the type system is valid with respect to the

semantics.

2. Extension of the formal language with Liquid Types
3. A type checker implementation written in Elm for Elm.

Started thesis in July 2019

Expected finish at the end of 2020

15

