Refinement Types for EIm

Master Thesis Report

Lucas Payr
30 Oktober 2019

Background: Elm Programming Language

Invented by Evan Czaplicki as his master-thesis in 2012.
Goal: Bring Function Programming to Web-Development
Side-Goal: Learning-friendly design decisions

Website: elm-lang.org

Characteristics

Pure Functional Language (immutable, no side effect,
everything is a function)

Compiles to JavaScript (in the future also to WebAssembly)
ML-like Syntax (we say fun a b c for fun(a, b, c))

Simpler than Haskell (no Type classes, no Monads, only one
way to do a given thing)

“No Runtimes errors” (running out of memory, function equality
and non-terminating functions still give runtime errors.)

Background: The Elm Architecture

Background: The EIm Architecture

Computer
Lol message j
m ____rfrl_e’_‘__’ _______ g o Update
|
|

Example

= Online Editor: ellie-app.com

Background: Refinement Types

Restricts the values of an existing type using a predicate.

Initial paper in 1991 by Tim Freeman and Frank Pfenning

= |nitial concept was done in ML.

= Allows predicates with only A,V, =, constants and basic
pattern matching.

= Operates over algebraic types.

= Needed to specify explicitly all possible Values.

Example
{a: (Bool, Bool)| a = (True, False) V a = (False, True)}

Vt{a: List tla= Cons (b:t) (c: List t) ANc= Cons (d: t)[]}

Background: Liquid Types

Liquid Types (Logically Quantified Data Types) introduced in 2008

= Invented by Patrick Rondan, Ming Kawaguchi and Ranji Jhala

= Initial concept done in OCaml. Later also C, Haskell and
TypeScript.

= Operates over Integers and Booleans. Later also Tuples and
Functions.

= Allows predicates with logical operators, comparisons and
addition.

Example
{(a: Bool, b : Bool)|(aV b) A=(aAb)}

{(a: Int,b: Int)|a < b}

Goals of Thesis

1. Formal language similar to Elm
1.1 A formal syntax
1.2 A formal type system
1.3 A denotational semantic
1.4 A small step semantic (using K Framework) for rapid
prototyping the language
1.5 Proof that the type system is valid with respect to the
semantics.
2. Extension of the formal language with Liquid Types
2.1 A formal syntax
2.2 A formal type system
2.3 A denotational semantic
2.4 A small step semantic (using K Framework) for rapid
prototyping the type checker
2.5 Proof that the extension infers the correct types.

3. A type checker implementation written in Elm for Elm.

Problems Addressed by the Type System

= Division by zero errors

= Off by one errors

= Proving the correctness of very simple programs
= Clearer interfaces

Theory: Formalization of the EIm Type System

We will use the Hindley-Milner type system (used in ML, Haskell
and Elm)

We say
T is a mono type < T is a type variable

V T is a type application

V T is a algebraic type

V T is a product type

V T is a function type

T is a poly type := T =Va. T’

where T’ is a mono type or poly type
and a is a symbol

T is a type ;<= T is a mono type V T is a poly type.

Theory: Formalization of the EIm Type System

Example

1. Nat ::= puC.1 | Succ C
2. List =Va.uC.Empty | Cons a C
3. splitAt : Va.Nat — List a — (List a, List a)

10

Theory: Formalization of the EIm Type System

The values of a type is the set corresponding to the type:

values(Nat) = {1, Succ 1, Succ Succ 1,...}

values(List Nat) = U values,(List Nat)
neN

valueso(List Nat) = {[|}

values,(List Nat) =
{[1} U {Cons a b|a € values(Nat), b € values,_1(List Nat)}

11

Theory: Definition of Liquid Types

Definition (Sketch)
Let T be a Type Application of Int, tuples and functions. Let g be

a logical formula consisting of

= Logical operations: —, A,V

= Logical constants: True, False

s Comparisons: <, <, =,#

= Integer operations: -+, -c where c is a constant
= Integer constants: 0,3,42, ...

= Bound variables: a, b, c, ...

Then we call the syntactic phrase {a: T|q(a)} a Liquid Type.

12

Theory: Definition of Liquid Types

Example
Let Nat = {a: Int|]a > 0} in

{{(a: Nat,b: Nat) |a+ b < 42} — {(c: Nat,d : Nat)|c < d}
|(a=cAb=d)V(b=cAha=d)
}

13

Theory: Revisiting the Problems

= Division by zero errors
(/) :Int — {a: Intla# 0} — Int
= Off by one errors

Let Pos = {a: Int|0 < aAa<8}in

get : (Pos, Pos) — Chessboard — Maybe Figure

Proving the correctness of very simple programs

swap : {(a: Int,b: Int) — (c:Int,d: Int)lb=cNha=d}
» Clearer interfaces
length : List a — {a: Int|]a > 0}

14

Current State

1. Formal language similar to Elm

1.1 A formal syntax (DONE)
1.2 A formal type system (DONE)
1.3 A denotational semantic (WORK IN PROGRESS)
1.4 A small step semantic (using K Framework) for rapid
prototyping the language
1.5 Proof that the type system is valid with respect to the
semantics.
2. Extension of the formal language with Liquid Types
3. A type checker implementation written in Elm for Elm.

Started thesis in July 2019
Expected finish at the end of 2020

ii5)

