## Problems Solved:

| 16 | 17 | 18 | 19 | 20 |
| :--- | :--- | :--- | :--- | :--- |

## Name:

## Matrikel-Nr.:

Problem 16. Given the language $L:=\left\{a a^{-1} \mid a \in \Sigma^{*}\right\}$ where $\Sigma=\{0,1\}$. Give an informal description of a Turing machine $M$, s.t., $L=L(M)$. You may use the following definition: $\left(a_{1} a_{2} \cdots a_{k}\right)^{-1}:=a_{k} a_{k-1} \ldots a_{1}$ for $a_{1}, a_{2}, \ldots, a_{k} \in \Sigma$.

Problem 17. Given the Turing machine $M=\left(Q, \Sigma, \Gamma, q_{0}, F, \delta\right)$ with $Q=$ $\left\{q_{0}, q_{1}, q_{2}, q_{3}\right\}, \Sigma=\{0,1\}, \Gamma=\{0,1, \sqcup\}, F=\left\{q_{3}\right\}$ and the transition function

$$
\delta: Q \times \Gamma \rightarrow Q \times \Gamma \times\{L, R\}
$$

with $\delta\left(q_{0}, 1\right)=\left(q_{0}, 1, R\right), \delta\left(q_{0}, 0\right)=\delta\left(q_{1}, 1\right)=\left(q_{1}, 1, R\right), \delta\left(q_{1}, \sqcup\right)=\left(q_{2}, \sqcup, L\right)$, $\delta\left(q_{2}, 1\right)=\left(q_{3}, \sqcup, R\right)$. For any other values $\delta$ is not defined. Compute the output of $M$ executed on the configuration: 110111.

Problem 18. Write down explicitly a Turing machine $M$ over $\Sigma=\{0\}$ which computes the function $d: \mathbb{N} \rightarrow \mathbb{N}$ given by $d(n)=2 n$.
Use unary representation: A number $n$ is represented by the string $0^{n}$ consisting of $n$ copies of the symbol 0 .

Problem 19. Construct a Turing machine $M=\left(Q, \Gamma, \sqcup,\{0,1\}, \delta, q_{0}, F\right)$ such that $L(M)=\left\{1^{k} 01^{k+1} \mid k \in \mathbb{N}\right\}$. Write down $Q, \Gamma, F$ and $\delta$ explicitly.

Problem 20. Write down explicitly an enumerator $G$ such that $\operatorname{Gen}(G)=$ $\left\{0^{2 n} \mid n \in \mathbb{N}\right\}$.
Since in the lecture notes it has not been formally defined, how a Turing machine with two tapes works, you may describe the transition function as

$$
\delta: Q \times \Gamma \rightarrow Q \times \Gamma \times\{R, L\} \times(\Gamma \cup\{\boxtimes\})
$$

in the following way: If $G$ is in state $q$ and reads the symbol $c$ from the working tape, and

$$
\delta(q, c)=\left(q^{\prime}, c^{\prime}, d, c^{\prime \prime}\right)
$$

then $G$ goes to state $q^{\prime}$, replaces $c$ by $c^{\prime}$ on the working tape and moves the working tape head in direction $d$. Moreover, unless $c^{\prime \prime}=\boxtimes$, the symbol $c^{\prime \prime}$ is written on the output tape and the output tape head is moved one position forward. If, however, $c^{\prime \prime}=\boxtimes$, nothing is written on the output tape and the output tape head rests in place.
Hint: There exists a solution with only 4 states.

