Problems Solved:

11 | 12 | 13 | 14 | 15

Name:

Matrikel-Nr.:

Problem 11. Let $M_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$ and $M_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$ be two DFSM over the alphabet Σ . Let $L(M_1)$ and $L(M_2)$ be the languages accepted by M_1 and M_2 , respectively.

Construct a DFSM $M = (Q, \Sigma, \delta, q, F)$ whose language L(M) is the intersection of $L(M_1)$ and $L(M_2)$. Write down Q, δ, q , and F explicitly.

Hint: M simulates the parallel execution of M_1 and M_2 . For that to work, M "remembers" in its state the state M_1 as well as the state of M_2 . This can be achieved by defining $Q = Q_1 \times Q_2$.

Demonstrate your construction with the following DFSMs.

Problem 12. Let \ominus be defined over natural numbers as follows.

$$x \ominus y = \begin{cases} x - y, & \text{if } x \ge y \\ 0, & \text{otherwise} \end{cases}$$

Show that the language $L = \{a^m b^n c^{n \ominus m} | m, n \in \mathbb{N}\}$ over the alphabet $\Sigma = \{a, b, c\}$ is not regular.

Problem 13. Let M_1 be the DFSM with states $\{q_1, q_2, q_3, q_4\}$ whose transition graph is given below. Determine a regular expression r such that $L(r) = L(M_1)$. Show the *derivation* of the the final result by the technique based on Arden's Lemma (see lecture notes).

Berechenbarkeit und Komplexität, WS2019

Problem 14. Let r be the following regular expression.

$$(ab+ba)^*+bb$$

Construct a nondeterministic finite state machine N such that L(N) = L(r). Show the derivation of the result by following the technique presented in the proof of the theorem *Equivalence of Regular Expressions and Automata* (see lecture notes).

Problem 15. Show that the language $L = \{a^m b^n \mid m, n \in \mathbb{N} \land m \ge 2n\}$ is not regular.

Berechenbarkeit und Komplexität, WS2019