Problems Solved:

\section*{| 6 | 7 | 8 | 9 | 10 |
| :--- | :--- | :--- | :--- | :--- |}

Name:

Matrikel-Nr.:

Problem 6. Solve the following tasks.

1. Write down a deterministic finite state machine D whose automata language is $L(D)=\{$ finite, language $\}$. Note that the alphabet consists of the individual letters of the words.
2. Let $L=\left\{10^{n} 1 \mid n\right.$ is an even number less than 10$\}$. Construct a DFSM D such that $L=L(D)$.
Note: Here by the term 0^{n} we mean the n-times concatenation of 0 -s, e.g., $0^{3}=000$.
3. Does for each finite language L exist a DFSM M so that $L=L(M)$?

Problem 7. Construct a deterministic finite state machine M over $\Sigma=\{0,1\}$ such that $L(M)$ consists of all words that do not contain the string 01. Hint: Start by constructing a nondeterministic finite state machine N that recogizes the words that do contain the string 01 . Proceed by converting your nondeterministic machine N to a deterministic machine D that accepts the same language. Now you are left with the task of coming up with a machine M whose language is precisely the complement of the language of D. This can be done by a small modification of D.

Problem 8. Construct explicitly a deterministic finite state machine $D=$ $(Q, \Sigma, \delta, S, F)$ with alphabet $\Sigma=\{a, b, c\}$, such that the words of $L(D)$ contain an even number of a 's, an odd number of b 's, and an even number of c 's. For example, $a a b c c, c a c b a, ~ a a b a a b b$ are from $L(D)$ and $b a b c, c c a b a b, c a a c b a a b b a$ are not from $L(D)$.
Problem 9. Convert the following NFA to DFA. It suffices to give the resulting transition graph.

Problem 10. Let the DFSM $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$ be given by $Q=\left\{q_{0}, q_{1}, q_{2}\right\}$, $\Sigma=\{0,1\}, F=\left\{q_{1}, q_{2}\right\}$ and the following transition function $\delta: Q \times \Sigma \rightarrow Q$:

Construct a minimal DFSM D such that $L(M)=L(D)$ using Algorithm Minimize. (cf. Section 2.3 Minimization of Finite State Machines)

