Problems Solved:

Name:

Matrikel-Nr.:

Problem 1. Show by induction that

$$
\sum_{i=1}^{n} i^{2}=\frac{n(n+1)(2 n+1)}{6}
$$

for $n \geq 1$.
Problem 2. Let $L \subseteq \Sigma^{*}$ be a language over the alphabet $\Sigma=\{a, b, c, d\}$ such that a word w is in L if and only if it is either a or b or of the form $w=d u c v d$ where u and v are words of L. For example, dacad, ddacbdcad, $d d d b c b d c d b c b d d c a d$ are words in L. Show by induction that every word of L contains an even number of the letter d.
Note that a language is just a set of words and a word is simply a finite sequence of letters from the alphabet.

Problem 3. Show $\sqrt{\frac{2}{3}} \notin \mathbb{Q}$ by an indirect proof.
Hint: http://en.wikipedia.org/wiki/Square_root_of_2\#Proofs_of_irrationality. Hint: Note that the fact that $\sqrt{2}$ and $\sqrt{3}$ are irrational does not imply that $\frac{\sqrt{2}}{\sqrt{3}}$ is irrational as well. For example $\frac{\sqrt{2}}{\sqrt{8}}$ is rational.

Problem 4. Construct a deterministic finite state machine M over the alphabet $\{a, b, l,-\}$ such that it accepts the language $L(M)=\{b l a\}$.
(a) Draw the graph.
(b) Provide the components of the defining quintuple $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$ explicitly.
(c) What has to be changed in order for the machine to accept all finite strings of the form bla, bla - bla, bla - bla - bla ...? (The empty word shall not be accepted.)

Problem 5. Construct a nondeterministic finite state machine for:

1. the language L_{1} of all strings over $\{0,1\}$ that contain 100 as a substring.
2. the language L_{2} of all strings over $\{0,1\}$ that contain the letters $1,0,0$ in exactly that order. (Note that before, in between and after these three letters any number of other letters may occur).

Your two machines must not use more than 4 states. Moreover, they should only differ in their transition functions. Draw their transition graphs.

