Theory and Software

Wolfgang Schreiner <Wolfgang.Schreiner@risc.jku.at>
Research Institute for Symbolic Computation (RISC)
Johannes Kepler University, Linz, Austria

JXU

JOHANNES KEPLER
UNIVERSITY LINZ

What is the purpose of logical modeling?

Precisely describe the problem to be solved.
Clarification of mind, resolution of ambiguities.
Specification of program to be developed.
Software-supported analysis of the problem and its solution.
Validation of specification.
Validation/verification of solution.
Interactive/automatic provers and model checkers.

Automatic computation of solution respectively simulation of execution.

Logical solvers (SMT: Satisfiability Modulo Theories).
Perhaps: rapid prototyping of a later manually written program.

To profit from software, we need computer-understandable models.

1/42

1. Modeling Systems

2/42

Programs are just special cases of “(computational) systems”.

Computational System
One or more active components.
Deterministic or nondeterministic behavior.
May or may not terminate.
Safety
“Nothing bad will ever happen.”
Partial correctness of programs: for every admissible input, if the program
terminates, its output does not violate the output condition.
Liveness
“Something good will eventually happen.”
Termination of programs: for every input, the program eventually terminates.

General goal is to establish the safety and liveness of computational systems.
3/42

Any computational system can be modeled as a transition system T = (S, I, R).

State space S = 51 x ... x S,: the set of all possible system states.

Determined by the possible values of system variables x, . . ., x, with values
from (finite or infinite) domains Sy, .. ., Sp.

Initial states 7 C S: the possible starts of the execution of the system.
Typically defined by an a predicate I, on the system variables xi,.. ., x,.
Transition relation R C S x S: the possible execution steps.

Typically defined by a predicate R, - between the prestate values x and the
poststate values x’ of the program variables.

Nondeterminism: for some prestate x there may be multiple poststates x’.

4/42

System C = (S, I, R) with counters x und y which may be independently incremented.
+1

+1
S =ZXZ 1 ¥
I(x,y):©@x=yAy =0 ¥ y
R((x,y),(x",y")) :&

xX'=x+1Ay =y)Vv
(xX'=xAy =y+1)
Infinitely many starting states.

[x=0,y=0],[x=1Ly=1],[x=2y=2],...
In each state two possibilities.
[x=2,y=3] > [x=3,y=3]
- [x=2,y=4]

A nondeterministic system.

5/42

Transition system T = (S, I, R).

System run: (finite or infinite) sequence so — s1 — s2 — ... of states in S.
so is initial: I(sp).
s; — si41 ist a transition: R(so, s1).
If run stops in s,, then s,, has no successor: =R(s,, s’), for all s” € S.

S0

System run- . _ _

System runs can be understood as paths in a directed graph. 6/42

Properties of a transition system can be specified in linear temporal logic (LTL).

System S satisfies LTL formula P, if each possible run of S satisfies P.

Action: A
Classical logic formulas with variables x, y,...and x’,y/,....
First state pair (sg, s1) of run satisfies A with x, y, ... interpreted in 5o and x’,y/, ...

interpreted in s;.

Always: oOP o0 0 0 0 -
Run satisfies property P from every position i on.
P
Eventually: 0P o o o o o -
Run satisfies P from at least one position i on.

Until: PUQ e o o o o -
Run satisfies property O from at least one position i on; from all previous
positions j < i it satisfies property P. 7/42

System C= (S, I, R) S =ZXZ

I(x,y):©x=yAy >0
R((x,), (x",y")) 1o
xX'=x+1Ay =y)V
xX'=xAy =y+1)
Safety: a(x =0Ay > 0)
Both x and y never become negative.
System satisfies specification, because every run has this property.
Liveness: ¢x > 1.
Variable x will eventually have a value greater equal 1.
System violates specification, because one run does not have this property:

[x=0,y=0]>[x=0,y=1] > [x=0,y=2] > [x=0,y=3] > ...
Liveness properties may be violated by unfair runs; we want to ignore such runs.
8/42

We only consider the verification of a safety property.

M |= OF.

Verify that formula F is an invariant of system M.
M =(S,LR).

I(s):o ...

R(s,s") :© Ro(s,8") V Ri(s,8") V...V Ry,_1(s, 5").
Proof by induction.
Vs. I(s) = F(s).
F holds in every initial state.
Vs,s’. F(s) A R(s,s") = F(s').
Each transition preserves F.
Reduces to a number of subproofs:

F(s) A Ro(s, s") = F(s')

F(s) A Ry—1(s,s") = F(s')

9/42

Infinity: Infinite P : ooP
For every position i there is a position j > i at which property P holds.
Property P is satisfied infinitely often.
Stability: Stable P :< ¢aP
There is a position i such that at all positions j > i property P holds.
Property P eventually permanently holds.
Executability: Enabled A
Action A describes a transition that is executable in the current state s: there is a
state s’ with R(s, s”) such that A(s, s”).
Weak Fairness: WF A :< Stable (Enabled A) = Infinite A
If A is eventually permanently enabled, then A will (infinitely often) be executed.
Strong Fairness: SF A :< Infinite (Enabled A) = Infinite A
If A'is infinitely often enabled, then A will (infinitely often) be executed. 140

System C = (S, I, R).
S =ZXZ

I(x,y):©x=yAy=0

R((x, y),(x", y")) &
xX'=x+1Ay =y)Vv
(xX'=xAy =y+1)

Liveness under the Assumption of Weak Fairness:
WFx' =x+1Ay =y)=>0x2>1
If first action is eventually permanently enabled, it is infinitely often executed.

The action is always enabled (Enabled x’ = x + 1 Ay’ = y = true).
Thus it is infinitely often executed such that eventually x > 1 holds (¢x > 1).

The process scheduler must implement the required fairness properties.
11/42

2. The Temporal Logic of Actions (TLA)

12/42

Leslie Lamport (Microsoft Research since 2001).
ACM Turing Award 2013.
TLA model of a system:

L AO[R]x AWF(A) A ...

Initial condition I,.
Transition relation [R],:
[Rlx=(RVx=x")
x = x’: stutter step (nothing changes).
Fairness conditions:

Conjunction of formulas WF(A) and/or SF,(A) for actions A.

http://research.microsoft.com/en-us/um/people/lamport/tla/tla.html

13/42

http://research.microsoft.com/en-us/um/people/lamport/tla/tla.html

X=Ax'=x+1

AY =y
Y=Ay =y+1
Ax' =x

S=A=0)A(y=0)
AOX VY] (x,y)
A WF(x’y>(X) A WF(x’y>(Y)

[x=0,x=0]>[x=1Ly=0—>[x=1Ly=0->[x=1Ly=1]—> ...

System is described in a structured way by the logical composition of actions.

14/42

TLA is not just a logic.

TLA+: A formal specification language based on TLA.
Values from the theory of sets (no static type system).
Chris Newcombe et al. How Amazon Web Services Uses Formal Methods.

Communications of the ACM, vol. 58 no. 4, pages 66-73, April 2015.
https://doi.org/10.1145/2699417

TLA+ Toolbox: an IDE for various TLA tools.
Writing and syntax checking of TLA+ specifications.
Pretty printer for generation of IATEXdocuments.
Translator from the algorithmic language PlusCal to TLA+.
Simulation and model checking of TLA+-specifications.
Derivation and checking of TLA+ proofs.

http://research.microsoft.com/en-us/um/people/lamport/tla/tools.html
15/42

https://doi.org/10.1145/2699417
http://research.microsoft.com/en-us/um/people/lamport/tla/tools.html

TLA+ Toolbox

Installation Details

TLA+ Toolbox provides a user interface for TLA+ Tools.

This is Version 1.5.1 of 1 June 2015 and includes:
- SANY Version 2.1 of 24 February 2014
- TLC Version 2.07 of 1 June 2015
- PlusCal Version 1.8 of 2 April 2013
- TLATeX Version 1.0 of 12 April 2013

16/42

——————————————— MODULE Counter ---------------
EXTENDS Naturals
VARIABLE x,y

I==x=0/\y=0 (x the initial state condition *)

X ==/\x>=x+1 (* increment x *)
/Ny =y

Y =/\x>=x (* increment y *)
/Ny’ = y+1

R==\/X (* increment x or y *)
\/ Y

var == <X,y» (* the system variables *)

== 1 /\ [D[R]_var /\ WF_var(X) /\ WF_var(Y) (* the whole specification *)

NotNegative == [J(x >= 0 /\ y >= 0) (* some properties *)

BecomeOne == <>(x=1/\y=1)
17/42

MODULE Counter

T
EXTENDS Naturals
VARIABLE z, y

the initial state condition

I 22=0Ay=0

X = Az’ =2z+1 increment z
LNV =y
Y = Nd' =12 increment y
ANy =y+1
R 2 VX increment z or y
VY

var E (x, y) the system variables

the whole specification

C 2 I AD[Rlvar A WFyar(X) A WF 0 (V)

some properties
NotNegative
BecomeOne

O(z>0Ay>0
Olz=1Ny=1

e 1>

— =

18/42

TLA+ Toolb
File Edt Window TLC Model Chacker TLA Proof Manager Help

v

i Spec Explorer| = O | /[Countertla | & Counter_1 % ©
G % | Model Overview| Advanced Options| Model Checking Results

* 1 Counter [Countertia) | MOdel Overview

oO# m O e

the behavior spec? What i the model?
Specy the values of declared constants.

O Initial predicate and next-state relation

nit

Next:

© Temporal formula

| :

 How to run?

O No Behavior Spec

= What to check?

 Deadiock

 Invariants

= Properties

Temporal formulas true for every

possible behavior.

O NotNegative Add

 BecomeOne

& BecomeOr ==
Remove

86Mof 208M T

Select specification and properties to be checked.

19/42

TLA+ Toolbox
File

Edit Window TLC Model Checker TLA Proof Manager Help.
v e
& SpecExplorer| = O

O Countertla | & Counter 1 %%

8% -

Model Overview [Advanced Options| Model Chcling Resits
© B Counter [Countertla] || & Advanced Options

oO# m O e

= Additional Definitions

% Definition Override
Definitions required for the model checking, in

5 Action Constraint
addition to the definitions in the specification ’

modles. @ fFLC Options

N - 10

A state constraint s a formula restricting the
possible states by a state predicate.

= State Constraint

x<=n/\y<=N

% Model Values

90M| F! 208m @

If necessary, restrict state space to finite subset.

20/42

TLA+ Toolb

File Edt Window TLC Model Chacker TLA Proof Manager Help
v
8 Spec Explorer

= O |G Coutertla & Counter 13

% | ModelOvenew | Advnced Optons Model Checking Resuts

PRSP S——— | - Model Checking Results

oO# m O e

= General

Start time: Tue Jul 14 16:56:33 CEST 2015
End time. Tue Jul 14 16:56:33 CEST 2015
Last checkpoint time:

Cument status: Not runring
Errors detected: Noermors
Fingerprit colision probabilty: calculated: 8.0E-16, observed: 7.56-17

& Statistics

State space progress (clic column header for graph)

Time Diamet States Fou Distinct Stat: Queue Size | | Module
20150714265 21 243 121 o Counter
Counter
Counter

= Evaluate Constant Expression

= User Output

¢ Progress Output

103Mof2a7M @

Coverage at 2015-07-14 16:56:33

Location Count
tine 10, col 9 to line 10, col 1, 121
tine 11, col 9 to line 11, col 1 121

{line 8, col 9 toline 8, col 16 | 121

Spec status : INEEEEIN

Check the selected properties.

21/42

File Edit Window TLC Model Checker TLA Proof Manager Help

TLA+ Toolb

oO#m

= What is the behavior spec?

© Inital precicate and next-state relation
Tnit:
Next:
©) Temporal formuta
© No Behavior Spec

= What to check?

 Deadiock

 Invariants

= Properties

Temporal formulas true for every
possible behavior.

O NotNegative Add
0 BecomeOne =
Dx+y<s)
Remove

= What is the model?
Specify the values of declared constants.

Advanced parts of the model: Additional definitions

State constrsints. Actionconstraints. Addiional mod

= How to run?.

| 1smorzsin @

v

ESpec..| = 8 Hmmmmn £ Counter_1 3% = 0 |[®ncemos = =
© & v || Model Overview|Advanced Options | Model Checking Resuits| Counter_1

PSP | ., Model Overview Luming etected

 Error-Trace Exploration

Error-Trace
Name Value
Definition over i
ay o

- & <Action line 1& State (num = 4)

ax i3
ay B

= & <Action ine 1 State (num = 5)
@ x a
ay o

& <Action line 1€ State (num = 6)

show its value here.

Spec status : INEEEEIN

In the error case a violating system run is displayed.

--------------- MODULE Counter ---------------
EXTENDS Naturals, TLC
VARIABLE x,y

C==1I/\ [O[R /\ PrintT(«x,y»)]_var /\ WF_var(X) /\ WF_var(Y)

User output may help to validate the model.

23/42

File Edit Window TLC Model Checker TLA Proof Manager Help
v e

@ SpecExplorer] = O | By Countertla | & Counter 1 =5
Model Overview | Advanced Options | Model Checing Rests
& Model Checking Results o®ma -
o#maen
= General
© Statistics
& Evaluate Constant Expression
= User Output
TLC output generated by evaluating Print and PrintT expressions.

 Progress Output
153Mof 247M T Spec status : [INpEREaIN

The visited states are printed.

24/42

——————————————— MODULE Counter ---------------
EXTENDS Naturals
VARIABLE x,y

I ==x=0/\y=0 (x the initial state condition *)

X == /\ x’ = x+1 (* increment x *)
/Ny =y

Y==/\%x=x (* increment y *)
/\ y’ = y+1

R ==\/X (* increment x or y *)
\/ Y

var == <x,y» (* the system variables x*)

C ==1/\ [O[R]_var /\ WF_var(X) /\ WF_var(Y) (* the whole specification *)
S == (x=0) /\ [Dlx’> = x+t1]_x /\ WF_x(x’> = x+1) (* another system *)

Specification of a more abstract system S. 25/42

TLA+ Toolb

File Edit Window TLC Model Checker TLA Proof Manager Help
LR R

8 Spec Explorer

= 0 [Rcomeds = comerin

& || Model Overview| Advanced Options| Model Checking Results

|2 & Counter [Counter.tia]

0 #

£ Counter_1
£ What is the behavior spec? & What s the model?
Specify the values of declared constants.
Initial predicate and next-state relation
Init:
Next:

Temporal formula

No Behavior Spec & How to run?

= What to check?

 Deadiock
© Invariants
& Properties

Temporal formulas true for every
possible behavior.

NotNegative Add

O BecomeOne

Remove

Additional model values.

8sMof223M @

Spec status : INEEEEIN

Check whether C refines S (C = S).

26/42

TLA+ Toolb

File Edit Window TLC Model Checker TLA Proof Manager Help

LR R
1 Spec Explorer] = O | Gy Countertla & Counter_1 R =B
G % | Model Overview| Advanced Options [Mocel Checking Results
|8 & Counter [Counter.ta] £ Model Checking Results 8 e
£ Counter_1 oO# m O e
& General
Start time: Tue Jul 14 17:22:33 CEST 2015
End time:

Tue Jul 14 17:22:34 CEST 2015
Last checkpoint time:

Cument status: Not runring

Errors detected: Noermors

Fingerprint colision probabilty: calculated: 8.0E-16, observed: 7.56-17
© Statitics

© Evaluate Constant Expression

 User Output

% Progress Output

89Mof223M T

Spec status : INEEEEIN

System C is a valid refinement of S.

27/42

Transmission of a sequence of bits between via shared registers.

Sender Receiver

sAck

var sBit € {0,1}, sAck € {0,1}, rBit € {0, 1}, sent € Data, rcvd € Data
init sBit = sAck = rBit

loop // Sender I loop // Receiver
wait sAck = sBit wait rBit # sBit
sent =...;sBit =1 - sBit rcvd = sent; rBit = sBit
sAck = rBit

Liveness property: Vd € Data. sent=d A sBit + SAck ~ revd = d
Response: P~ Q = O(P = <¢Q)

Request P is always followed by response Q. -

MODULE ABCorrectness

T
EXTENDS Naturals
CONSTANTS Data
VARIABLES sBit, sAck, rBit, sent, rcvd

| |

ABCInit = sBit € {0, 1} A sAck = sBit A rBit = sBit A sent € Data A rcvd € Data

CSndNewValue(d) = A sAck = sBit A sent’ = d A sBit' = 1 — sBit
A UNCHANGED (sAck, rBit, rcvd)

CReuMsg = A rBit # sBit A rBit' = sBit A revd’ = sent
A UNCHANGED (sBit, sAck, sent)

CRevAck = ArBit # sAck A sAck’ = rBit
A UNCHANGED (sBit, rBit, sent, rcvd)
A

ABCNezt = (3d € Data : CSndNewValue(d)) V. CRcvMsg V' CRcvAck

cvars = (sBit, sAck, rBit, sent, rcvd)
A

ABCSpec = ABCInit A O[ABCNext] cvars AN WF cyars (CRevMsg) A WF cyars (CRevAck)

A

Typelnv = sBit € {0, 1} A sAck € {0,1} ArBit € {0, 1} A sent € Data A rcvd € Data
SentLeadsToRcvd = YV d € Data : (sent = d) A (sBit # sAck) ~ (revd = d)
[

29/42

1 Spec Explorer| = 8

8% -

1 Attematingsit [Atternati
1 Counter [Counter.tla]

B MCAB1 [MCABL tla]

81 MCAltematingBit [MCAL

TLA+ Toolb
File Edit Window TLC Model Checker TLA Proof Manager

Help
£ ABCorrectness_1 &

Model Overview | Advanced Options | Model Checking Resuts

LY - Model Overview

DR

 What is the behavior spec? What is the modal?
Specify the values of declared constants.

O Iniial precicate and next-state relation Data <~ [modelvalue] (1, d2)

Ini:

Next:

© Temporal formuta

ABCSpec

No Behavior Spec How to run?
 What to check?

 Deadlock
© Invariants.

= Properties

Temporal formulas true for every
possible behavior

& Typelnv Add
 SentleadsToRevd p—
Remove

146M of 252M

Advanced parts of the model:Additional definitions.

Stateconstrints. Actionconstraints. Additional model values.

Definition override

O# = a &

Spec Status : INGaREANN

No error: protocol satisfies specification.

30/42

Transmission of a sequence of bits by lossy communication channels.

Sender Receiver
ackQ

msg() : transmits messages (sBit, sent).
New values after update by sender.
ack@ : transmits messages rBit.
New values after update by receiver.

This protocol shall satisfy the same correctness property as the original one.

31/42

: MODULE AlternatingBit
EXTENDS Naturals, Sequences
CONSTANTS Data
VARIABLES msgQ, ackQ, sBit, sAck, rBit, sent, rcvd
ABInit = AmsgQ = () A ackQ = ()
A sBit € {0, 1} A sAck = sBit A rBit = sBit A sent € Data A revd € Data

ABNest = V (3d € Data : SndNewValue(d))
V' ReSndMsg V RevMsg V SndAck vV RevAck V- LoseMsg V LoseAck
abvars = (msgQ, ackQ, sBit, sAck, rBit, sent, rcvd)
ABSpec = A ABInit A O[ABNext) apvars
A WF gpvars (ReSndMsg) A WF gppars (SndAck) A SF apyars (RevMsg) A SF appars (RevAck)

I

ABTypelnv = A msgQ € Seq({0, 1} x Data) A ackQ € Seq({0, 1})
AsBit € {0, 1} A sAck € {0, 1} A rBit € {0, 1} A sent € Data A revd € Data
INSTANCE ABCorrectness

L |

The core of the specification.

32/42

SndNewValue(d) = A sAck = sBit A sent' = d A sBit' = 1 — sBit
A msgQ' = Append(msgQ, (sBit’, d))
A UNCHANGED (ackQ, sAck, rBit, rcvd)
ReSndMsg = A sAck # sBit
A msgQ" = Append(msgQ, (sBit, sent))
A UNCHANGED (ackQ, sBit, sAck, rBit, sent, rcvd)
RevMsg =
A UNCHANGED (ackQ, sBit, sAck, sent)
SndAck = A ackQ' = Append(ackQ, rBit)
A UNCHANGED (msgQ, sBit, sAck, rBit, sent, rcvd)
RevAck 2 AackQ # () A ackQ' = Tail(ackQ) A sAck’ = Head(ackQ)
A UNCHANGED (msgQ, sBit, rBit, sent, rcvd)

Lose(q) = Ng#()
AJiel..Len(q): ¢ =[j €1..(Len(q) — 1) IF j < i THEN g[j] ELSE q[j + 1]]
A UNCHANGED (sBit, sAck, rBit, sent, rcvd)

LoseMsg = Lose(msgQ) A UNCHANGED ackQ

LoseAck =

Lose(ackQ) A UNCHANGED msgQ

The actions of the specification.

AmsgQ # () A msgQ' = Tail(msgQ) A rBit' = Head(msgQ)[1] A revd’ = Head(msgQ)[2]

33/42

TLA+ Tool
File Edit Window TLC Model Checker TLA Proof Manager Help.

1 Spec Explorer| = O

[AttematingBittla | £ AlternatingBit.1 & ==
&1 ABCorrectness [ABCorre|| & AdVanced Options o

&1 Counter [Counter.tia]
M MCABL [MCABLt] Additional Definitions

4 Definition Override
B MCAltematingit [McAY | = State Constraint

9 Action Constraint
Astate constraint is a formula restricting the

 TLC Options
possible states by a state predicate
Len (msgQ) <=

Len (ackQ) <=

% Model Values

167Mof 222M W

Spec Status : INGaREANN

Restriction of the state space to a finite subset.

34/42

1 Spec Explorer

= 0 |G Atemstingsita

B8 -

£ AltematingBit 1 3t

TLA+ Toolbox
File Edit Window TLC Model Checker TLA Proof Manager Help.

Model Overview | Advanced Options | Model Checking Resuts

& MCAB1 [MCABLtta] = What s the behavior spec?

81 MCAltematingBit [MCAL

Init:
Next

© Temporal formuta

ABSpac

© No Behavior Spec

= What to check?

 Deadlock
© Invariants.
= Properties

Temporal formulas true for every
possible behavior.

& ABTypelnv

& ABCSpec =

Remove

O Initial predicate and next-state relation

-
21 ABCorrectness [ABCorre| © MOde! Overview oO®Es e

= What is the model?

Specify the values of declared constants.

Data <- [model value] (d1, 42)

Edit
l Advanced parts of the model:Additional definitions. Definition override

Stateconstrints. Actionconstraints. Additional model values.

3 How to run?.

| aemorzziv @

Spec status : INNEEEEEIN

No error: the protocol refines the original one and thus inherits its correctness.

35/42

Resources

el 0000 ee0

Clients | @ @ O o @O

A server allocates various resources to a set of clients.
A client with no resources and no pending requests may request some resources.

The server may assign some or all of the requested resources.

Resource requests can be processed in multiple parts; the client may potentially
continue already with some part.

The client may return a subset of its resources; ultimately it must return all of them.
Safety: no resource is simultaneously allocated to two clients.

Liveness: each resource request is eventually satisfied. 36/42

The method operates with the following variables.

Server:
unsat{c]: the resources requested by client ¢ but not yet allocated by the server.
alloc[c]: the resources requested by client ¢ and allocated by the server.
sched: the list of clients with pending requests.
Older requests appear further ahead in the list and are preferably handled.
Client c:
requests|c]: the resources requested by client ¢ that it has not yet received.
holding[c]: the resources held by the client.
Netzwerk:
network : the messages pending in the network.

Since messages may be still pending in the network, the server view may be
different from the client view.
37/42

———————————————— MODULE DistributedAllocator ————————————————)
EXTENDS Naturals, Sequences

CONSTANTS Clients, Resources
VARIABLES unsat, alloc, sched, requests, holding, network

Messages = [type : { “request”, “allocate”, “return”}, clt : Clients, rsrc : SUBSET Resources
Drop(seq, i) 2 SubSeq(seq, 1, i — 1) o SubSeq(seq, i + 1, Len(seq))

available = Resources \ (UNION {alloc(c] : ¢ € Clients})

Range(f) 2 {f[z] : = € DOMAIN f}

Init =

A unsat = [¢ € Clients — {}] A alloc = [¢ € Clients — {}]
A requests = [c¢ € Clients — {}] A holding = [c € Clients — {}]
A sched = () A network = {}
Neat =
V Im € network : RReq(m) vV RAlloc(m) VvV RRet(m)
V 3¢ € Clients, S € SUBSET Resources : Request(c, S) V Allocate(c, S) V Return(c, S)

vars = (unsat, alloc, sched, requests, holding, network)

Liveness =
AV ¢ € Clients : WF yar(requests|c] = {} A Return(c, holding[c]))
AYc € Clients : WF y45(3 S € SUBSET Resources : Allocate(c, S))
AV m € Messages : WF 4,5 (RReq(m)) A WF yqps (RAlloc(m)) A WE qrs (RRet(m))

Specification 2 Init A O[Neat]yars A Liveness

| y

The core of the specification.

38/42

RReg(m) =
A m € network N m.type = "request”
A alloc[m.clt] = {} * don’t handle request messages prematurely(!)
A unsat’ = [unsat EXCEPT ![m.clt] = m.rsrc]
A network’ = network \ {m}
A sched’ = 1F m.clt € Range(sched) THEN sched ELSE Append(sched, m.clt)
A UNCHANGED (alloc, requests, holding)

RAlloc(m) =
A m € network A m.type = “allocate”
A holding" = [holding EXCEPT ![m.clt] = QU m.rsrc]
A requests’ = [requests EXCEPT ![m.clt] = @\ m.rsrc|
A network’ = network \ {m}
A UNCHANGED (unsat, alloc, sched)

RRet(m) =
A m € network A m.type = "return”
A alloc” = [alloc EXCEPT ![m.clt] = @\ m.rsrc]
A network’ = network \ {m}
A UNCHANGED (unsat, sched, requests, holding)

The receipt of messages.

39/42

Request(c, §) =
A requests|c) = {} A holding[c] = {}
A S # {} A requests’ = [requests EXCEPT ![c] = S]
A network’ = network U {[type — “request”, clt — ¢, rsrc — S|}
A UNCHANGED (unsat, alloc, sched, holding)

Allocate(c,) =
NS #{}AS C available N unsat|c]
A 3i € DOMAIN sched :
A sched[i] = ¢
AVj € l..i—1:unsat[sched[j]]NS = {}
A sched’ = 1F S = unsat[c] THEN Drop(sched, i) ELSE sched
A alloc’ = [alloc EXCEPT ![c] = QU S]
A unsat’ = [unsat EXCEPT ![c] = @)\ S|
A network’ = network U {[type — “allocate”, clt — ¢, rsrc — S|}
A UNCHANGED (requests, holding)

Return(c, S) =
NS #{}AS C holding[c]
A holding' = [holding EXCEPT ![c] = @\ S]
A network’ = network U {[type — “return”, clt — ¢, rsrc — S|}
A UNCHANGED (unsat, alloc, sched, requests)

The sending of messages.

40/42

I

Typelnvariant =
A unsat € [Clients — SUBSET Resources] A alloc € [Clients — SUBSET Resources|
A requests € [Clients — SUBSET Resources) A holding € [Clients — SUBSET Resources|
A sched € Seq(Clients) A network € SUBSET Messages
ResourceMutex =
Vel, €2 € Clients : holding[c1] N holding[c2] # {} = ¢1 = ¢2
Clients WillReturn =
V¢ € Clients : (requests[c] = {} ~ holding[c] = {})
Clients WillObtain =
V¢ € Clients, r € Resources : € requests|c] ~ r € holding|c]
InfOftenSatisfied =
V¢ € Clients : OO (requests(c] = {})
I

The correctness properties.

41/42

TLA+ Toolbox
File Edit Window TLC Model Checker TLA Proof Manager Help

& Spec Explorer| = 8

g%

< | ModeL Ovenvew | Advanced Options| st Checking Resuts

8 ABCormectnoss [ABCome]| & Model Overview

W Allocatorimplementation

XN
& AternaingSit [Altermati
& Counter [Counteria] || = Whatis the behavior spec? = Whatis the model?
Specify the values of dectared constans.
Vistribut [Dis} pecity
) it precicate an next-state reltion fents < [modelvaue] (1, <2, <
@ MCAB1 [MCAB1.tla) o Clent [modet value }{cl, <2, <3}
Init: [Init esources <- [model value] {r1, r:
& MCAtematingBit [MCA |\ R [model value J{r1, r2)

® Temporal formula

‘Action constraints

I Advanced parts of the model: Additional dfinitions.

Defnition override.

it

\ model val

© NoBehavior Spec 4 How to run?

= What to check?

 Deadlock
 Invariants
= Properties

Temporal formulas true for every
possible behavior.

 OTypelnvariant

Add
 [ResourceMutex ==
 ClientsWiReturm

Remove

 [IClientsWilObtain
 ini

ied

9sMof20oM |

Spec status : INGSEEENN

The allocator satisfies the correctness property (for 3 clients and 2 resources).

42/42

	Modeling Systems
	The Temporal Logic of Actions (TLA)

