The Temporal Logic of Actions II

The Temporal Logic of Actions II

Wolfgang Schreiner Research Institute for Symbolic Computation (RISC-Linz) Johannes Kepler University, A-4040 Linz, Austria

Wolfgang.Schreiner@risc.uni-linz.ac.at http://www.risc.uni-linz.ac.at/people/schreine

Proving Simple Program Properties

\bullet Program P:

```
- var natural x, y = 0
do \langle \mathbf{true} \to x := x + 1 \rangle
[] \langle \mathbf{true} \to y := y + 1 \rangle
```

• TLA Formula Φ:

```
-\operatorname{Init}_{\Phi} \equiv (x=0) \wedge (y=0)
-\operatorname{M}_{1} \equiv (x'=x+1) \wedge (y'=y)
-\operatorname{M}_{2} \equiv (y'=y+1) \wedge (x'=x)
-\operatorname{M} \equiv \operatorname{M}_{1} \vee \operatorname{M}_{2}
-\Phi \equiv \operatorname{Init}_{\Phi} \wedge \square[\operatorname{M}]_{\langle x,y\rangle}
\wedge \operatorname{WF}_{\langle x,y\rangle}(\operatorname{M}_{1}) \wedge \operatorname{WF}_{\langle x,y\rangle}(\operatorname{M}_{2})
```

ullet Program P has property F:

$$-\Phi \Rightarrow F$$

Invariance Properties

- TLA formula $\Box P$.
- Partial correctness
 - $-\ \mbox{If program has terminated, answer is correct.}$
- Deadlock freedom
 - Program is not deadlocked.
- Mutual exclusion
 - At most one process is in critical section.
- Proofs based on rule INV1.

$$- \frac{I \wedge [\mathsf{N}]_f \Rightarrow I'}{I \wedge \square[\mathsf{N}]_f \Rightarrow \square I}$$

Example: Type Correctness

- Type declarations in TLA:
 - Invariance property assuring that program variables are always from certain domain.
 - $-\Phi \Rightarrow \Box T$
- \bullet natural x, y

$$-T \equiv (x \in \mathsf{Nat}) \land (y \in \mathsf{Nat}).$$

• Must prove:

$$\begin{array}{c} -\operatorname{Init}_{\Phi} \Rightarrow T \\ T \wedge [\mathsf{M}]_{\langle x,y \rangle} \Rightarrow T' \end{array}$$

- Then we know:
 - $\begin{array}{l} -\Phi \\ \Rightarrow \mathit{Init}_{\Phi} \wedge [\mathsf{M}]_{\langle x,y \rangle} \\ \Rightarrow T \wedge \Box [\mathsf{M}]_{\langle x,y \rangle} \\ \Rightarrow \Box T \end{array}$

Proof

- Prove $T \wedge [M]_{\langle x,y \rangle} \Rightarrow T'$
 - $-T \wedge \mathsf{M}_1 \Rightarrow T'$
 - $-T \wedge M_2 \Rightarrow T'$
 - $-T \wedge (\langle x, y \rangle' = \langle x, y \rangle) \Rightarrow T'$
- Prove $T \wedge M_1 \Rightarrow T'$

$$-T' \equiv ((x \in \mathbf{Nat}) \land (y \in \mathbf{Nat}))'$$
$$\equiv (x' \in \mathbf{Nat}) \land (y' \in \mathbf{Nat})$$

- $-T \wedge \mathsf{M}_1 \Rightarrow x' \in \mathsf{Nat}\ T \wedge \mathsf{M}_1 \Rightarrow y' \in \mathsf{Nat}$
- Prove $T \wedge M_1 \Rightarrow x' \in \mathbf{Nat}$

$$-T \wedge \mathsf{M}_1$$

$$\Rightarrow (x \in \mathsf{Nat}) \wedge (x' = x + 1)$$

$$\Rightarrow x' \in \mathsf{Nat}$$

Proofs "mechanically" guided by the structure of formulas.

General Invariance Proofs

- Special case $\Phi \Rightarrow \Box T$
 - $-\,T$ was invariant of $[\mathsf{M}]_{\langle x,y
 angle}$
 - -T could be used as I in INV1.
- \bullet Generally $\Phi \Rightarrow \Box P$
 - -P need *not* be invariant.
 - Find invariant $I \Rightarrow P$
- ullet Creativity is in finding I
 - Invariance proof itself mechanical.

INV1 reduces temporal reasoning to ordinary (non-temporal) reasoning!

More About Invariance Proofs

- Use one invariance property to prove another.
 - $-\operatorname{\mathsf{Know}}\Phi\Rightarrow\Box T.$
 - Prove Φ ⇒ $\Box P$.
- Application of rule INV2.
 - $\vdash \Box I \Rightarrow (\Box [\mathsf{N}]_f \equiv \Box [\mathsf{N} \land I \land I']_f)$
 - $\Phi \equiv \operatorname{Init}_{\Phi} \wedge \Box [\mathsf{M} \wedge T \wedge T']_{\langle x, y \rangle} \\ \wedge \mathsf{WF}_{\langle x, y \rangle} (\mathsf{M}_1) \wedge \mathsf{WF}_{\langle x, y \rangle} (\mathsf{M}_2)$
 - Can substitute M \wedge T \wedge T' instead of M for N in INV1.

Eventuality Properties

- Something eventually happens.
- Termination
 - $-\diamondsuit$ terminated.
- Service
 - If process has requested service, it is eventually served.
 - requested \mapsto served.
- Message delivery
 - If a message is sent often enough, it is eventually delivered.
 - $-(\Box \diamondsuit sent) \Rightarrow \diamondsuit delivered.$
- $\bullet P \mapsto Q.$
 - $-\Phi \wedge (n \in \mathbf{Nat}) \Rightarrow \Diamond(x > n)$
 - $-\Phi \Rightarrow ((n \in \mathbf{Nat} \land x = n) \mapsto \diamondsuit(x = n + 1))$

Must be derived from fairness condition!

Example

• Prove WF1

$$-P \leftarrow n \in \mathbf{Nat} \land x = n \ Q \leftarrow x = n+1$$

 $\mathsf{N} \leftarrow \mathsf{M}, \ \mathsf{A} \leftarrow \mathsf{M}_1, \ f \leftarrow \langle x, y \rangle$

• Hypotheses:

$$\begin{array}{l} -\left(n\in\operatorname{Nat}\wedge x=n\right)\wedge\left[\operatorname{M}\right]_{\langle x,y\rangle}\\ \Rightarrow\left(\left(n\in\operatorname{Nat}\wedge x'=n\right)\vee\left(x'=n{+}1\right)\right)\\ \left(n\in\operatorname{Nat}\wedge x=n\right)\wedge\left\langle\operatorname{M}_1\right\rangle_{\langle x,y\rangle}\\ \Rightarrow\left(x'=n{+}1\right)\right)\\ \left(n\in\operatorname{Nat}\wedge x=n\right)\wedge\left\langle\operatorname{M}_1\right\rangle_{\langle x,y\rangle}\\ \Rightarrow\operatorname{Enabled}\left\langle\operatorname{M}_1\right\rangle_{\langle x,y\rangle} \end{array}$$

– From definitions of M_1 and M.

• Conclusion:

$$- \Box [\mathsf{M}]_{\langle x,y\rangle} \land \mathsf{WF}_{\langle x,y\rangle}(\mathsf{M}_1)$$

$$\Rightarrow ((n \in \mathsf{Nat} \land x = n) \mapsto (x = n+1))$$

Other Properties

What about more complicated properties"

— A behavior begins with x and y both zero, and repeatedly increments either x or y (in a single operation), choosing non-deterministically between them, but choosing each infinitely many times.

ullet Exactly our formula $\Phi!$

- No distinction between program and property.
- View Φ as description of program.
- View Φ as *specification* of program.

ullet Consider a program Ψ .

- Show that $\Psi \Rightarrow \Phi$.

Another Example

```
var integer x, y = 0;

var semaphore sem = 1;

cobegin

loop

\alpha_1: \langle P(sem) \rangle;

\beta_1: \langle x := x + 1 \rangle

\gamma_1: \langle V(sem) \rangle;

endloop

[]

loop

\alpha_2: \langle P(sem) \rangle;

\beta_2: \langle y := y + 1 \rangle

\gamma_2: \langle V(sem) \rangle;

endloop

coend
```

- Program is *informal* description.
- Real definition is formula Ψ .

The Formula Ψ

- $\Psi \equiv Init_{\Psi} \wedge \Box [\mathsf{N}]_{w} \wedge \mathsf{SF}_{w}(\mathsf{N}_{1}) \wedge \mathsf{SF}_{w}(\mathsf{N}_{2})$
- $Init_{\Psi} \equiv (pc_1 = \text{"a"}) \land (pc_2 = \text{"a"}) \land (x = 0) \land (y = 0) \land (sem=1)$
- $w \equiv \langle x, y, sem, pc_1, pc_2 \rangle$
- $\bullet N \equiv N_1 \vee N_2$
- $N_1 \equiv \alpha_1 \vee \beta_1 \vee \gamma_1$
- $N_2 \equiv \alpha_2 \vee \beta_2 \vee \gamma_2$
- $\alpha_1 \equiv (pc_1 = \text{"a"}) \land (0 < sem)$ $\land pc_1' = \text{"b"} \land sem' = sem-1$ $\land Unchanged \langle x, y, pc_2 \rangle$
- $\beta_1 \equiv pc_1 = \text{"b"}$ $\land pc_1' = \text{"g"} \land x' = x + 1$ $\land Unchanged \langle x, y, pc_2 \rangle$
- $\gamma_1 \equiv pc_1 = \text{"g"}$ $\land pc_1' = \text{"a"} \land sem' = sem+1$ $\land Unchanged \langle x, y, pc_2 \rangle$
- $\alpha_2 \equiv \ldots$, $\beta_2 \equiv \ldots$, $\gamma_2 \equiv \ldots$

The Next-State Relation

• α_1 step:

- Starts in state with $pc_1 =$ "a" (first process is at control point α_1) and 0 < sem (no process in critical section).
- Ends in staet with $pc_1 =$ "b" (first process is at control point β_1).
- Decrements sem and does not change x, y, pc_2 .

• N₁ step:

- $-\alpha_1$ step or β_1 step or γ_1 step.
- Execution of atomic operation by first process.

• N step:

- Step of either process.
- The program's next-state relation.

The Fairness Requirement

- $\bullet \Psi$ shall implement Φ .
 - -x and y must be incremented infinitely often.
 - Infinitely many N_1 and N_2 steps must occur.
- Assume only N₂ steps occur.
- Does WF $_w(N_1)$ rule out this?
 - Enabled $\alpha_1 \equiv (pc_1 = \text{``a''}) \land (0 \text{ i sem}).$
 - $-\alpha_1$ is enabled and disabled infinitely often.
 - $-\langle \mathsf{N}_1
 angle_w$ is disabled infinitely often.
 - $-\operatorname{WF}_w(\mathsf{N}_1)$ still holds for this behavior!
- Does $SF_w(N_1)$ rule out this?
 - Either $\langle N_1 \rangle_w$ is eventually disabled forever, or infinitely many $\langle N_1 \rangle_w$ steps occur.
 - $-\langle \mathsf{N}_1 \rangle_w$ is enabled infinitely often.
 - $-\mathsf{SF}_w(\mathsf{N}_1)$ does not hold for this behavior!

Need strong fairness condition!

Proving Ψ **Implements** Φ

- \bullet Prove $\Psi \Rightarrow \Phi$
 - $-\mathit{Init}_{\Psi}\Rightarrow \mathit{Init}_{\Phi}$
 - $\, \Box [\mathsf{N}]_w \Rightarrow \Box [\mathsf{M}]_{\langle x,y \rangle}$
 - $-\Psi \Rightarrow \mathsf{WF}_{\langle x,y\rangle}(\mathsf{M}_1) \wedge \mathsf{WF}_{\langle x,y\rangle}(\mathsf{M}_2)$
- Proof of Step Simulation:
 - $-[\mathsf{N}]_w \Rightarrow [\mathsf{M}]_{\langle x,y \rangle}$
 - $-[N]_w \equiv \alpha_1 \vee \ldots \vee \gamma_2 \vee (w' = w)$
 - $-\beta_1 \Rightarrow M_1$
 - $-\beta_2 \Rightarrow M_2$
 - $-(\langle x, y \rangle' = \langle x, y \rangle)$ for all others.

Proof of Fairness

- $\bullet \ \Psi \Rightarrow \mathsf{WF}_{\langle x,y\rangle}(\mathsf{M}_1)$
 - -x is incremented infinitely often.
 - Application of SF_2 .
 - Use β_1 for B.
 - Strengthen N by invariant I through application of INV2.
 - $egin{aligned} -I &\equiv x \in \mathbf{Nat} \ & \wedge \left(\left((sem=1) \, \wedge \, (pc_1 = pc_2 = \text{``a''})
 ight) \ & ee \left((sem=0) \ & \wedge \, \left(\left((pc_1 = \text{``a''}) \, \wedge \, (pc_2 \in \{\text{``b''}, \text{``g''}\})
 ight) \ & ee \left((pc_2 = \text{``a''}) \ & \wedge \, (pc_1 \in \{\text{``b''}, \text{``g''}\}))
 ight)) \end{aligned}$

For details, see the paper.

Hiding Variables

• A simple processor/memory interface:

 Processor issues read and write operations executed by memory.

• Three interface registers:

- op: set by processor to indicate operation, reset by memory after operation.
- adr set by processor to indicate memory address to be read or written.
- val set by processor to indicate value to be written, set by memory to return result of read.

• Specification Φ :

- memory(n) current value of location n.
- Address set of legal address.
- MemVal set of possible memory values.
- Action S(m,v) assignment memory(m):=v.
- Processor actions R_{proc} , W_{proc} .
- Memory responses R_{mem} , W_{mem} .

Formal Specification

- $\bullet \ \Phi \equiv \mathit{Init}_{\Phi} \ \land \ \Box[\mathsf{N}]_{w} \ \land \ \mathsf{WF}_{w}(\mathsf{N}_{mem})$
- $Init_{\Phi} \equiv op = \text{"ready"}$ $\land \forall n \in \mathbf{Address}: memory(n) \in \mathbf{MemVal}$
- ullet $N \equiv N_{\it mem} \vee R_{\it proc} \vee W_{\it proc}$
- $\bullet \ \mathsf{N}_{mem} \equiv \mathsf{R}_{mem} \lor \mathsf{W}_{mem}$
- $w \equiv \langle op, adr, val, memory \rangle$
- $S(m,v) \equiv \forall n \in \mathbf{Address}$: $(n=m) \Rightarrow (memory(n)' = v)$ $\land (n \neq m) \Rightarrow (memory(n)' = memory(n))$

• Fairness condition:

- Memory eventually responds to each request.
- Processor need not issue requests.

Formal Specification (Contd)

- $R_{proc} \equiv op = \text{"ready"}$ $\land op' = \text{"read"} \land adr' \in \mathbf{Address}$ $\land memory' = memory$
- $W_{proc} \equiv op = \text{``ready''}$ $\land op' = \text{``write''} \land adr' \in \mathbf{Address}$ $\land val' \in \mathbf{MemVal}$ $\land memory' = memory$
- $R_{mem} \equiv op = "read"$ $\land op' = "ready" \land val' = memory(adr)$ $\land memory' = memory$
- $W_{mem} \equiv op =$ "write" $\land op' =$ "ready" $\land S(adr, val)$
- Only interested in memory interface:
 - Behavior of op, adr, val.
 - Behavior of *memory* should be hidden.
 - ∃*memory* : Φ .

Quantification over Flexible Variables

- $\bullet \exists x : F$
 - Flexible variable x.
 - There exists values for x such that F holds.
- Auxiliary definitions:
 - $-s =_x t$: states s and t assign same values to all variables other than x.
 - $-s =_x t \equiv \forall' v' \neq 'x' \ s[[v]] = t[[v]]$
 - $-\langle s_0, s_1, \ldots \rangle =_x \langle t_0, t_1, \ldots \rangle \equiv \forall n \in \mathbf{Nat}: s_n =_x t_n$

Quantification over Flexible Variables

- "Obvious" definition:
 - $-\sigma[[\exists x: F]] \equiv \exists \tau \in \mathbf{St}^{\infty}: (\sigma =_{x} \tau) \wedge \tau[[\mathsf{F}]]$
 - Not correct since not necessarily invaraint under stuttering!
- Remove stuttering steps:

```
- \sharp \langle s_0, \, s_1, \, \dots \rangle \equiv
\text{if } \forall n \in \textbf{Nat} \colon s_n = s_0
\text{then } \langle s_0, \, s_0, \, \dots \rangle
\text{else if } s_1 = s_0 \text{ then } \sharp \langle s_1, \, s_2, \, \dots \rangle
\text{else } \langle s_0 \rangle \circ \sharp \langle s_1, \, \dots \rangle
```

- \bullet TLA = STLA + quantification.
 - Existential quantifier over flexible and rigid variables.
 - All TLA formulas are invariant under stuttering:

$$\sharp \sigma = \sharp \tau \Rightarrow \sigma[[F]] = \tau[[F]]$$

Quantification in TLA

• Syntax:

 $- \langle general\ formula \rangle \equiv \langle STLA\ formula \rangle$ $|\ \exists \langle flexible\ variable \rangle \colon \langle general\ formula \rangle$ $|\ \exists \langle rigid\ variable \rangle \colon \langle general\ formula \rangle$ $|\ \langle general\ formula \rangle \land \langle general\ formula \rangle$ $|\ \neg \langle general\ formula \rangle$

• Semantics:

$$-\sigma[[\exists x \colon F]] \equiv \exists \rho, \tau \in \mathbf{St}^{\infty}:$$

$$(\sharp \sigma = \sharp \rho) \land (\rho =_{x} \tau) \land \tau[[\mathsf{F}]]$$

$$-\sigma[[\exists c \colon F]] \equiv \exists c \in \mathbf{Val}: \sigma[[F]]$$

• Proof rules:

$$- E1. \qquad \vdash F(f/x) \Rightarrow \exists x: F$$

- E2.
$$\frac{F \Rightarrow G}{(\exists x : F) \Rightarrow G}$$
 , x not free in G .

$$- F1. \qquad \vdash F(e/c) \Rightarrow \exists c: F$$

$$- F2.$$
 $\frac{F \Rightarrow G}{(\exists c: F) \Rightarrow G}$, c not free in G .

Refinement Mappings

- Implementation of memory interface.
 - ∃*memory*: Φ .
 - Main memory main and cache memory cache.
 - cache(m) cache value for location m or \perp .

Actions:

- $-\mathsf{T}(a,\,m,\,v)$ assignment a(m):=v.
- $-R_{pro}$, W_{pro} processor *read* and *write* request.
- $-R_{\it cch}$, $W_{\it cch}$ response to processor requests serviced by the cache.
- $-C_{get}(m)$, $C_{fl}(m)$ moving value from memory to cache and flushing value from cache to memory.
- P next-state relation (disjunctions of all actions).
- F disjunction of memory actions.

A Simple Cached Memory

- $\bullet \ \Phi \equiv Init_{\Phi} \wedge \square[\mathsf{P}]_{u} \wedge \mathsf{WF}_{u}(\mathsf{F}).$
- $Init_{\Phi} \equiv op = \text{"ready"}$ $\land \forall n \in Address:$ $(main(n) \in MemVal) \land (cache(n) = \bot)$
- $u \equiv \langle op, adr, val, main, cache \rangle$
- $P \equiv R_{pro} \vee W_{pro} \vee R_{cch} \vee W_{cch} \vee (\exists m \in Address: C_{get}(m) \vee C_{fl}(m))$
- ullet $F \equiv R_{pro} \lor W_{pro} \lor (C_{get}(adr) \land (op = "read"))$
- $T(a, m, v) \equiv \forall n \in Address:$ $(n = m) \Rightarrow (a'(n) = v)$ $\land (n' \neq m) \Rightarrow (a'(n) = a(n))$
- $R_{pro} \equiv op = \text{``ready''}$ $\land op' = \text{``read''} \land adr' \in \mathbf{Address}$ $\land Unchanged \ \langle main, cache \rangle$
- $W_{pro} \equiv op = \text{``ready''}$ $\land op' = \text{``write''} \land adr' \in \mathbf{Address}$ $\land val' \in \mathbf{MemVal}$ $\land \textit{Unchanged } \langle \textit{main, cache} \rangle$

A Simple Cached Memory (Contd)

- $C_{get}(m) \equiv cache(m) = \bot$ $\land T(cache, m, main(m))$ $\land Unchanged \langle op, adr, val, main \rangle$
- $R_{cch} \equiv op = \text{"read"} \land cache(adr) \neq \bot$ $\land op' = \text{"ready"} \land val' = cache(adr)$ $\land Unchanged \langle main, cache \rangle$
- $W_{cch} \equiv op =$ "write" $\land op' =$ "ready" $\land T(cache, adr, val)$ $\land Unchanged main$
- $C_{fl}(m) \equiv cache(m) \neq \bot$ $\land (op \neq "read" \lor m \neq adr)$ $\land T(main, m, cache(m))$ $\land T(cache, m, \bot)$ $\land Unchanged \langle op, adr, val \rangle$

Formal Specification

• Correctness statement:

```
-(\exists main, cache: \Psi) \Rightarrow (\exists memory: \Phi)
```

• Proof:

- $-\overline{\textit{memory}}(m) \equiv \text{if } \textit{cache}(m) = \bot$ then main(m) else cache(m)
- $-\Psi \Rightarrow \Phi(\overline{\textit{memory}}/\textit{memory})$
- "Concrete" state function <u>memory</u> implements "abstract" variable <u>memory</u>.

Cached memory still abstract:

- No particular cache maintenance policy is specified.
- Given a concrete caching algorithm, it has to be proved that it implements the simple cached memory.

Refinement Mappings

Refinement Mappings

- Prove: $(\exists x_1, \dots, x_m : \Psi) \Rightarrow (\exists y_1, \dots, y_n : \Phi)$
- Define state functions $\overline{y_1}$, ..., $\overline{y_n}$ in terms of the variables occurring in Ψ .
- Prove $\Psi \Rightarrow \overline{\Phi}$.
- $-\overline{\Phi}:=\Phi(\overline{y_1}/y_1,\ldots,\overline{y_n}/y_n).$

Mapping need not exist:

- Can prove: (∃sem, pc_1 , pc_2 : Ψ) \Rightarrow Φ.
- Cannot prove: $\Phi \Rightarrow (\exists sem, pc_1, pc_2: \Psi)$
- Cannot define state functions \overline{sem} , $\overline{pc_1}$, $\overline{pc_2}$ in terms of x and y.

Addition of auxiliary variables:

- $-(\exists h, p: \Phi^{hp}) \Rightarrow (\exists sem, pc_1, pc_2: \Psi)$
- Using auxiliary variables, refinement mappings can be always found.

Summary

TLA formulas describe algorithms:

- Effects of all statements.
- Control flow.
- Liveness properties.

Advantages:

- Independent of language.
- All information is explicitly specified in mathematical formulas.

• Problems:

- TLA formulas may get very large.
- Good structure and abstractions required to manage complexity.