The Temporal Logic of Actions Il

The Temporal Logic of Actions Il

Wolfgang Schreiner
Research Institute for Symbolic Computation (RISC-Linz)
Johannes Kepler University, A-4040 Linz, Austria

Wolfgang.Schreiner@risc.uni-linz.ac.at
http://www.risc.uni-linz.ac.at/people/schreine

Wolfgang Schreiner RISC-Linz

The Temporal Logic of Actions Il

Proving Simple Program Properties

e Program P:

—var natural z, y = 0
do
(true — = :=z + 1)

[

(true — y ==y + 1)
od

e TLA Formula :
— Initg = (x =0) A (y =0)
~-Mi=@'=z+1) A =y)
~-My=('=y+1) A (2 =x)
—M=M; VM,
— & = Initg A O[M] ;.

A WF g (Mi) A WE) (M)

e Program P has property F"

— 0= F

Wolfgang Schreiner

The Temporal Logic of Actions Il

Invariance Properties

o TLA formula OP.
e Partial correctness
— If program has terminated, answer is correct.
e Deadlock freedom
— Program is not deadlocked.
e Mutual exclusion

— At most one process is in critical section.

e Proofs based on rule INV1.
I A [N]f = I
I AN O[N]y = 01

Wolfgang Schreiner

The Temporal Logic of Actions Il

Example: Type Correctness

e Type declarations in TLA:

— Invariance property assuring that program variables are al-
ways from certain domain.

- ¢ =0T
e natural z, y

—T = (z € Nat) A (y € Nat).
e Must prove:

— Initg = T
T N [|\/|]<$7y> = T

e [hen we know:

-
= Initg N [M]<w>
=T A D[M]<x7y>
= QT

Wolfgang Schreiner 3

The Temporal Logic of Actions Il

Proof

e Prove T' A [I\/|]<x7y> = T’
—TAM; =T
—TANMy =T
“TA(zy) =(xy))=T

o Prove ' A My = T
—T"= ((z € Nat) A (y € Nat))’
=(2' € Nat) A (y € Nat)
—TAM, =2 € Nat T A M; = ¢/ € Nat
e Prove T' A My = 2/ € Nat

- T N M,
= (z € Nat) A (¢' =z + 1)
= 2/ € Nat
Proofs “mechanically” guided by the struc-
ture of formulas.

Wolfgang Schreiner 4

The Temporal Logic of Actions Il

General Invariance Proofs

e Special case & = OT

— T was invariant of [M], .y
— T could be used as I in INVL.

e Generally & = OP

— P need not be invariant.

— Find invariant [= P
e Creativity is in finding [/

— Invariance proof itself mechanical.

INV1 reduces temporal reasoning to ordinary
(non-temporal) reasoning!

Wolfgang Schreiner 5

The Temporal Logic of Actions Il

More About Invariance Proofs

e Use one invariance property to prove an-
other.
— Know & = OT.
— Prove & = OP.

e Application of rule INV2.
- FOI= (O[N], =B[NA T AT

— & = Inite ANOM AT A Tl](cc,y>
A WF (M) A WE, 1(Ms)

— Can substitute M A T A T" instead of M for N in INV1.

Wolfgang Schreiner 6

The Temporal Logic of Actions Il

Eventuality Properties

e Something eventually happens.
e [ermination

— Oterminated.
e Service

— If process has requested service, it is eventually served.

— requested +— served.
o Message delivery

— |f a message is sent often enough, it is eventually delivered.
— (OCsent) = Odelivered.

o P — ().
—® A (n € Nat) = O(z > n)
—d=((n € Nat Az =n)— Oz =n+1))

Must be derived from fairness condition!

Wolfgang Schreiner

The Temporal Logic of Actions Il

Example

e Prove WF1

—P+neNatANxz=nQ < z=n+l

N <M, A+ My, [+ (z,9)
e Hypotheses:

—(n € Nat Az = n) A [M],)
= ((n € Nat A 2/ = n) V (2 = n+1))
(n € Nat Az = n) A (M)
= (" = nt1))
(n € Nat Az = n) A (M),
= Enabled (M1),)

— From definitions of M; and M.

e Conclusion:

- D[M]<x,y> N WF<$,y>(M1)
= ((n € Nat A z = n) = (z = n+1))

Wolfgang Schreiner

The Temporal Logic of Actions Il

Other Properties

e What about more complicated properties”

— A behavior begins with z and y both zero, and repeatedly
increments either 2 or y (in a single operation), choosing
non-deterministically between them, but choosing each in-
finitely many times.

e Exactly our formula P!

— No distinction between program and property.
— View @ as description of program.

— View ® as specification of program.
e Consider a program V.
— Show that ¥ = @,

Wolfgang Schreiner 9

The Temporal Logic of Actions Il

Another Example

var integer z, y = 0;
var semaphore sem = 1;
cobegin
loop
a1: (P(sem));
Bi: {x =z +1)
Ti: (V(sem))
endloop

[

loop
ag: (P(sem));
Pa: (y ==y +1)
yai (V(sem));
endloop
coend

e Program is informal description.

e Real definition is formula V.

Wolfgang Schreiner 10

The Temporal Logic of Actions Il

The Formula ¥

o Inity = (pc; = “a") A (pcy = “a")
A (x — 0) A (y = 0) AN (semzl)

o w = (x, y, sem, pcy, pca)
eN=N; VN,

oNi = V3 VY

oeNo =y V 32V

e a1 = (pcy = “a") A (0 < sem)

A pcy’ = “b" A sem’ = sem-1
A Unchanged (x, y, pca)

" ﬂl = pc1 — ubn
/\pc11:ugn/\$/:$+1
A Unchanged (z, y, pco)

i_n

Y = pC1 = 8
A pci’ = "a" A sem’ = sem+1
A Unchanged (z, y, pco)

OQQE...,BQE...,"}/QE...

Wolfgang Schreiner

11

The Temporal Logic of Actions Il

The Next-State Relation

® (V| step:
— Starts in state with pc; = “a” (first process is at control
point 1) and 0 < sem (no process in critical section).
— Ends in staet with pc; = “b” (first process is at control
point).

— Decrements sem and does not change x, vy, pco.
o N step:

— (v step or 31 step or y; step.

— Execution of atomic operation by first process.
o N step:

— Step of either process.

— The program’s next-state relation.

Wolfgang Schreiner 12

The Temporal Logic of Actions Il

The Fairness Requirement

o VU shall implement ®.

— x and y must be incremented infinitely often.

— Infinitely many N; and N, steps must occur.

e Assume only Ny steps occur.

e Does WF,;,(N{) rule out this?
— Enabled oy = (pc1 = “a") A (0 j sem).
— «rq is enabled and disabled infinitely often.
— (Ny),, is disabled infinitely often.
— WF,,(Ny) still holds for this behavior!

e Does SF;(N7) rule out this?

— Either (N;),, is eventually disabled forever, or infinitely
many (N;),, steps occur.

— (Ny),, is enabled infinitely often.
— SF.,(N;) does not hold for this behavior!

Need strong fairness condition!

Wolfgang Schreiner 13

The Temporal Logic of Actions Il

Proving ¥ Implements ¢

e Prove V = ¢
— Inity = Initg
— O[N], = O[M];..
-V = WF<$,y>(M1) A WF<J¢,y>(M2)
® Proof of Step Simulation:
— [N]o = [M](2.)
—[Nlo=a1 V... Vy V(v =w)
— 1 =M,
— 2 =My
— ((z, y)' = (x, y)) for all others.

Wolfgang Schreiner

14

The Temporal Logic of Actions Il

Proof of Fairness

oV = WF(:C,y>(M1)

— x is incremented infinitely often.

— Application of SF».
— Use (3 for B.

— Strengthen N by invariant / through application of INV2.
— [= x € Nat
A (((sem=1) A (pci = pcy = “a"))
V ((sem=0)
M((per = *3) A (pes € {8, 8')))
v ((pes = “a")

A (per € {0, "g"})))))
For details, see the paper.

Wolfgang Schreiner 15

The Temporal Logic of Actions Il

Hiding Variables

e A simple processor/memory interface:

— Processor issues read and write operations executed by
memory.

e [hree interface registers:
— op: set by processor to indicate operation, reset by memory
after operation.

— adr set by processor to indicate memory address to be read
or written.

— val set by processor to indicate value to be written, set by
memory to return result of read.

e Specification ®:

— memory(n) current value of location n.

— Address set of legal address.

— MemVal set of possible memory values.

— Action S(m,v) assignment memory(m):=v.
— Processor actions R,5c, W oo

— Memory responses R, Wonem.

Wolfgang Schreiner 16

The Temporal Logic of Actions Il

Formal Specification

[(I) = Inltq) /\ I:l[N]w /\ WFw(Nm(’Tn)

o /nits = op = “ready”
A ¥Yn € Address: memory(n) € MemVal

o N = Nmem V Rproc V Wproc
o Nmem ERmem V Wmem

e w = (op, adr, val, memory)

e S(m,v) = Vn € Address:
(n =m) = (memory(n)' = v)
A(n # m) = (memory(n)’ = memory(n))

e Fairness condition:

— Memory eventually responds to each request.

— Processor need not issue requests.

Wolfgang Schreiner

17

The Temporal Logic of Actions Il

Formal Specification (Contd)

® R, . = op = "ready”
A op’ = “read” A adr’ € Address

A\ memory’ = memory
oW, . = op = "ready”

A op’ = “write” A adr’ € Address
A val' € MemVal

A\ memory’ = memory
o R,,c., = op = “read”
A op’ = “ready” A val' = memory(adr)
/\ memory’ = memory
oW, ..., = op = “write”
A op’ = “ready”

A S(adr, val)

e Only interested in memory interface:

— Behavior of op, adr, val.

— Behavior of memory should be hidden.

— dmemory : .

Wolfgang Schreiner

18

The Temporal Logic of Actions Il

Quantification over Flexible Variables

o dn: F

— Flexible variable z.

— There exists values for « such that F' holds.
e Auxiliary definitions:

— § =, 1: states s and t assign same values to all variables
other than .

— s =, t =Y £ "2 s[[v]] = t[[v]]
—(s0, 81, -..) =z {to, t1, ...) =Vn € Nat: s, =, t,

Wolfgang Schreiner 19

The Temporal Logic of Actions Il

Quantification over Flexible Variables

e "Obvious’ definition:
—o|[Fz: F]] = 3 € St™: (0 =, 7) A 7[[F]]

— Not correct since not necessarily invaraint under stuttering!

e Remove stuttering steps:
— #(s0, S1, ...)=
if Vi € Nat: s, = s
then <80, S0, >
else if s; = 5o then {(s, s2, ...)
else (sp) o #(sy, ...)

e TLA = STLA + quantification.

— Existential quantifier over flexible and rigid variables.

— All TLA formulas are invariant under stuttering:

o =t = ol[F]] = 7[[F]]

Wolfgang Schreiner

20

The Temporal Logic of Actions Il

Quantification in TLA

e Syntax:

— (general formula) = (STLA formula)
| 3(flexible variable): (general formula)
| 3(rigid variable): (general formula)
| (general formula) A\ {(general formula)
| =(general formula)

e Semantics:
—o|[Fz: F]] = 3p, 7 € St

(Ho=tp) A (p =2 7) A T[[F]]
— o[[Fc: F]] = 3c € Val: o|[F]]

e Proof rules:

— E1. - F(f/z)=3Ja: F
F =G

— E2. G F) = G 2 not free in (.
— F1. - F(e/c) = dc: F

F =G .
— F2. G F)=> G ¢ not free in 5.

Wolfgang Schreiner

21

The Temporal Logic of Actions Il

Refinement Mappings

e Implementation of memory interface.

— dmemory: .

— Main memory main and cache memory cache.

— cache(m) cache value for location m or L.

e Actions:
— T(a, m, v) assignment a(m) := v.

— Ry0, W, processor read and write request.

— Recn, W, response to processor requests serviced by the

cache.

— Cyer(m), Cri(m) moving value from memory to cache and

flushing value from cache to memory.
— P next-state relation (disjunctions of all actions).

— F disjunction of memory actions.

Wolfgang Schreiner

22

The Temporal Logic of Actions Il

A Simple Cached Memory

o & = Inity A O[P], A WF,(F).

o Inits = op = “ready”
A ¥n €Address:
(main(n) € MemVal) A (cache(n) = 1)

e « = (op, adr, val, main, cache)

o P = Rp'r'o V Wp'r'o V Rcch V chh

V (Im € Address: C . (m) V Cp(m))
oF=R,,VW,,V (Chladr) A (op = "“read”))
e T(a, m, v) = Vn € Address:

(0 = m) = ((n) = v)

A (n' # m) = (a'(n) = a(n))
e R,, = op= "ready”

A op’ = “read” A adr’ € Address

A Unchanged (main, cache)

o W,., = op= "ready”
Nop' = “write" A adr’ € Address
A val' € MemVal

A Unchanged (main, cache)

Wolfgang Schreiner

The Temporal Logic of Actions Il

A Simple Cached Memory (Contd)

e C,.i(m) = cache(m) = L
A T(cache, m, main(m))
A Unchanged (op, adr, val, main)

e R.., = op = "read” A cache(adr) # L
A op’ = “ready” A val' = cache(adr)
A Unchanged (main, cache)

o W, = op = “write”
A op’ = “ready” A T(cache, adr, val)
A Unchanged main

e C(m) = cache(m) # L
A (op # “read” V m # adr)
A T(main, m, cache(m))
A T(cache, m, 1)
A Unchanged (op, adr, val)

Wolfgang Schreiner

The Temporal Logic of Actions Il

Formal Specification

e Correctness statement:
— (dmain, cache: V) = (Imemory: P)
e Proof:
— memory(m) = if cache(m) = L
then main(m) else cache(m
— ¥ = d(memory/memory)

— “Concrete” state function memory implements “abstract”
variable memory.

e Cached memory still abstract:

— No particular cache maintenance policy is specified.

— Given a concrete caching algorithm, it has to be proved
that it implements the simple cached memory.

Wolfgang Schreiner 25

The Temporal Logic of Actions Il

Refinement Mappings

e Refinement Mappings
— Prove: (3z1,...,2p: V) = (Fy1,...,yn: D)

— Define state functions 7, ..., T, in terms of the variables
occuring in W,

— Prove ¥ = .
= &= O(Fi/y1, -, Ya/Un).
e Mapping need not exist:
— Can prove: (Jsem, pcy, pca: V) = .
— Cannot prove: & = (Jsem, pcy, pca: V)

— Cannot define state functions sem, pcy, pcs in terms of x
and .

e Addition of auxiliary variables:
— (3h, p: ") = (Isem, pcy, pcy: V)

— Using auxiliary variables, refinement mappings can be al-
ways found.

Wolfgang Schreiner 26

The Temporal Logic of Actions Il

Summary

e LA formulas describe algorithms:

— Effects of all statements.
— Control flow.

— Liveness properties.
e Advantages:

— Independent of language.

— All information is explicitly specified in mathematical for-
mulas.

e Problems:

— TLA formulas may get very large.

— Good structure and abstractions required to manage com-
plexity.

Wolfgang Schreiner 27

