| Gruppe | Popov (8:30) | Hopov (9:15) | Hemmecke (10:15) | Hemmecke (11:00) | | | | | | |
| :--- | :--- | :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Name | | | Matrikel | | | | | | SKZ | |

Klausur 2
 Berechenbarkeit und Komplexität
 18. Januar 2019

Part 1 RecFun2018
Let $f: \mathbb{N} \rightarrow \mathbb{N}$ be a primitive recursive function and let $g: \mathbb{N} \rightarrow_{p} \mathbb{N}$ be a μ-recursive function.

$\mathbf{1}$	yes	
$\mathbf{2}$		no
$\mathbf{3}$		no

Is f necessarily μ-recursive?
If g is a total function, is it then also necessarily primitive recursive?
Assume that for every natural number x for which g is defined the equation $g(x)<f(x)$ holds. Can it be concluded that g is primitive recursive?

Conterexample: Let g be a not total function.

| 4 | | no \quad Assume there is a LOOP program that for every natural number x computes |
| :--- | :--- | :--- | the value $g(f(x))$. Is then g necessarily primitive recursive?

Counterexample: Let g be the (not primitive recursive) function that is only defined at 0 , so that $g(0)=0$ and let f be the zero function.

Assume there is a LOOP program that for every natural number x computes the value $f(g(x))$. Is then g necessarily primitive recursive?

Counterexample: f is the zero function and g is a total function that is not primitive recursive. Then $f \circ g=f$ and, therefore, primitive recursive, i.e., LOOP-computable.

Part 2 Grammar2018
Consider the grammar $G=(N, \Sigma, P, S)$ where $N=\{S, A\}, \Sigma=\{0,1\}, P=$ $\{S \rightarrow 1 A A 0, A A \rightarrow A A A, A \rightarrow \varepsilon\}$.

$\mathbf{6}$		no
$\mathbf{7}$	yes	
$\mathbf{8}$		no
$\mathbf{9}$	yes	
$\mathbf{1 0}$	yes	

Is $1000 \in L(G)$?
Is $L(G)$ finite?
Is the grammar G context-free?
Is there a right-linear grammar G^{\prime} such that $L(G)=L\left(G^{\prime}\right)$?
Does for every Turing machine M exist a grammar H such that $L(M)=$ $L(H)$?

Part 3 Decidable2018
Consider the following problems. In each problem below, the input of the problem is the code $\langle M\rangle$ of a Turing machine $M=\left(Q, \Gamma, \sqcup,\{0,1\}, \delta, q_{0}, F\right)$.
Let $L_{A}(M)$ be the set of words that M accepts in at most 2018 steps.
For $w \in\{0,1\}^{*}$ let $b(w)$ be the natural number denoted by the bitstring $1 w$.
Problem A: Is $L_{A}(M)$ finite?
Problem B: Is there a μ-recursive function f_{M} such that for every word $w \in$ $\{0,1\}^{*}$ the Turing machine M halts on w if and only if $f_{M}(b(w))=0$?
Problem C: Does there exist a right-linear grammar G such that $L(M)=L(G)$? Problem D: Does M halt on at least one word $w \notin L(M)$?

If we find a word $w \in\{0,1\}^{*}$ of length exactly 2018 that is accepted by M, then any longer word with w as a prefix is also accepted, i.e., $L_{A}(M)$ is infinite. If such a word cannot be found, then since there is only a finite number of words with length $<2018, L_{A}(M)$ is finite. In other words, A is decidable.

Is B decidable?

Every Turing machine M can be simulated by a WHILE program P_{M}. If M halts, also P_{M} halts. We can modify P_{M} to another WHILE program W_{M} such that it returns 0 in this case. If M does not halt, also P_{M} (and therefore W_{M}) does not halt. Clearly W_{M} computes a μ-recursive function f_{M} with the properties given in Problem B. In other words, such an f_{M} does exist for every Turing machine M. Problem B can trivially be answered by a Turing machine that always says "yes". Problem B is, therefore, decidable.

$\mathbf{1 3}$		no \quad Is C decidable?

Rice Theorem

\section*{| $\mathbf{1 4}$ | yes \quad Is D semi-decidable? |
| :--- | :--- | :--- |}

Run M (in parallel) on all words (usual trick of doing one step of the run of all instances of M and starting a new instance of M on the next word). Whenever an instance halts in a non-accepting state, the answer to problem D is "yes".

Let $P \subseteq\{0,1\}^{*}$ be a decision problem such that the restricted Halting problem is is reducible to P. Can it be concluded that P is undecidable?

Part 4 Complexity2018
Let $f(n)=20^{n}+n^{18}, g(n)=n^{20}+18^{n}$, and $h(n)=n^{20} \cdot \log _{2}\left(n^{18}\right)$.

$\mathbf{1 6}$		no
$\mathbf{1 7}$		no
$\mathbf{1 8}$		no
$\mathbf{1 9}$	yes	

Is it true that $f(n)=\Theta(g(n))$?
Is it true that $g(n)=O(h(n))$?
Is it true that $100^{n}=O\left(10^{n}\right)$?
Is it true that $n!=O\left(n^{n}\right)$?
Part 5 LoopWhile2018
Let $f, g: \mathbb{N}^{2} \rightarrow \mathbb{N}$ be defined as follows

$$
f(a, b):=\left\{\begin{array}{ll}
1, & \text { if } a<b, \\
0, & \text { otherwise } ;
\end{array} \quad g(a, b):= \begin{cases}0, & \text { if } a<b, \\
1, & \text { otherwise } .\end{cases}\right.
$$

$\mathbf{2 0}$	yes	
$\mathbf{2 1}$	yes	

Are both f and g LOOP computable functions?
Is ($\mu \mathrm{f})$ a LOOP computable function?
$(\mu f)(b)=b$.

22	no	Is $(\mu \mathrm{g})$ a LOOP computable function?

$(\mu g)(0)$ is undefined.

Part 6 OpenComputability2018
The syntax of a LOOP program is given by:

$$
P::=x_{i}=0\left|x_{i}:=x_{j}+1\right| x_{i}:=x_{j}-1|P ; P| \text { loop } x_{i} \text { do } P \text { end }
$$

Please note that the arithmetic operations allowed in a LOOP program are only $x_{i}:=x_{j}+1$ and $x_{i}:=x_{j}-1$.

Write a LOOP program that computes the function $c(n)=\sum_{k=1}^{n} k^{2}$.
loop x_{1} do $\quad / /$ for $x_{1}=n$ downto 1
loop x_{1} do $\quad / /$ Compute $x_{0}:=x_{0}+x_{1}^{2}$. loop x_{1} do $x_{0}:=x_{0}+1$; end;
end;
$x_{1}:=x_{1}-1 ;$
end;

Let $B(n)$ be the minimal number of commands of the form $x_{i}:=x_{j}+1$ that are executed by a LOOP program that computes $c(n)$. Express $B(n)$ in Ω notation.
$B(n)=\Omega(\quad)$
The result $c(n)=\frac{n(n+1)(2 n+1)}{6}$ can only be achieved by executing $\Omega\left(n^{3}\right)$ times a command of the form $x_{i}:=x_{j}+1$.

