
Gruppe Popov (8:30) Popov (9:15) Hemmecke (10:15) Hemmecke (11:00)

Name Matrikel SKZ

Klausur 2

Berechenbarkeit und Komplexität
18. Januar 2019

Part 1 RecFun2018

Let f : N → N be a primitive recursive function and let g : N →p N be a

µ-recursive function.

1 yes Is f necessarily µ-recursive?

2 no If g is a total function, is it then also necessarily primitive recursive?

3 no Assume that for every natural number x for which g is de�ned the equation

g(x) < f(x) holds. Can it be concluded that g is primitive recursive?

Conterexample: Let g be a not total function.

4 no Assume there is a LOOP program that for every natural number x computes

the value g(f(x)). Is then g necessarily primitive recursive?

Counterexample: Let g be the (not primitive recursive) function that is
only de�ned at 0, so that g(0) = 0 and let f be the zero function.

5 no Assume there is a LOOP program that for every natural number x computes

the value f(g(x)). Is then g necessarily primitive recursive?

Counterexample: f is the zero function and g is a total function that is
not primitive recursive. Then f ◦ g = f and, therefore, primitive
recursive, i.e., LOOP-computable.

Part 2 Grammar2018

Consider the grammar G = (N,Σ, P, S) where N = {S,A}, Σ = {0, 1}, P =
{S → 1AA0, AA→ AAA,A→ ε}.

6 no Is 1000 ∈ L(G)?

7 yes Is L(G) �nite?

8 no Is the grammar G context-free?

9 yes Is there a right-linear grammar G′ such that L(G) = L(G′)?

10 yes Does for every Turing machine M exist a grammar H such that L(M) =
L(H)?

Part 3 Decidable2018

Consider the following problems. In each problem below, the input of the problem

is the code 〈M〉 of a Turing machine M = (Q,Γ,t, {0, 1} , δ, q0, F).
Let LA(M) be the set of words that M accepts in at most 2018 steps.

For w ∈ {0, 1}∗ let b(w) be the natural number denoted by the bitstring 1w.
Problem A: Is LA(M) �nite?

Problem B: Is there a µ-recursive function fM such that for every word w ∈
{0, 1}∗ the Turing machine M halts on w if and only if fM (b(w)) = 0?
Problem C: Does there exist a right-linear grammar G such that L(M) = L(G)?
Problem D: Does M halt on at least one word w /∈ L(M)?

11 yes Is A decidable?

If we �nd a word w ∈ {0, 1}∗ of length exactly 2018 that is accepted by
M , then any longer word with w as a pre�x is also accepted, i.e.,
LA(M) is in�nite. If such a word cannot be found, then since there is
only a �nite number of words with length < 2018, LA(M) is �nite. In
other words, A is decidable.

12 yes Is B decidable?

Every Turing machine M can be simulated by a WHILE program PM .
If M halts, also PM halts. We can modify PM to another WHILE
program WM such that it returns 0 in this case. If M does not halt,
also PM (and therefore WM) does not halt. Clearly WM computes a
µ-recursive function fM with the properties given in Problem B. In
other words, such an fM does exist for every Turing machine M .
Problem B can trivially be answered by a Turing machine that always
says �yes�. Problem B is, therefore, decidable.

13 no Is C decidable?

Rice Theorem

14 yes Is D semi-decidable?

Run M (in parallel) on all words (usual trick of doing one step of the
run of all instances of M and starting a new instance of M on the next
word). Whenever an instance halts in a non-accepting state, the
answer to problem D is �yes�.

15 yes Let P ⊆ {0, 1}∗ be a decision problem such that the restricted Halting

problem is is reducible to P . Can it be concluded that P is undecidable?

Part 4 Complexity2018

Let f(n) = 20n + n18, g(n) = n20 + 18n, and h(n) = n20 · log2(n18).

16 no Is it true that f(n) = Θ(g(n))?

17 no Is it true that g(n) = O(h(n))?

18 no Is it true that 100n = O(10n)?

19 yes Is it true that n! = O(nn)?

Part 5 LoopWhile2018

Let f, g : N2 → N be de�ned as follows

f(a, b) :=

{
1, if a < b,

0, otherwise;
g(a, b) :=

{
0, if a < b,

1, otherwise.

20 yes Are both f and g LOOP computable functions?

21 yes Is (µf) a LOOP computable function?

(µf)(b) = b.

22 no Is (µg) a LOOP computable function?

(µg)(0) is unde�ned.

23 yes Are both (µf) and (µg) WHILE computable functions?

Part 6 OpenComputability2018

The syntax of a LOOP program is given by:

P ::= xi = 0 | xi := xj + 1 | xi := xj − 1 | P ;P | loop xi do P end

Please note that the arithmetic operations allowed in a LOOP program are only

xi := xj + 1 and xi := xj − 1.

24 1 Point Write a LOOP program that computes the function c(n) =
∑n

k=1 k
2.

loop x1 do // for x1 = n downto 1
loop x1 do // Compute x0 := x0 + x21.

loop x1 do x0 := x0 + 1; end;
end;
x1 := x1 − 1;

end;

25 1 Point Let B(n) be the minimal number of commands of the form xi := xj + 1
that are executed by a LOOP program that computes c(n). Express B(n)
in Ω notation.

B(n) = Ω()

The result c(n) = n(n+1)(2n+1)
6 can only be achieved by executing

Ω(n3) times a command of the form xi := xj + 1.

