Gruppe	Popov (8:30)	Popov (9:15)	Hemmecke (10:15) Hemmecke (11:0)0)					
Name			Matrikel					SKZ		

Klausur 2

Berechenbarkeit und Komplexität

18. Januar 2019

Part 1 RecFun2018

Let $f : \mathbb{N} \to \mathbb{N}$ be a primitive recursive function and let $g : \mathbb{N} \to_p \mathbb{N}$ be a μ -recursive function.

1 yes	Is f necessarily μ -recursive?
2 no	If g is a total function, is it then also necessarily primitive recursive?
3 no	Assume that for every natural number x for which g is defined the equation $g(x) < f(x)$ holds. Can it be concluded that g is primitive recursive?
	Conterexample: Let g be a not total function.
4 no	Assume there is a LOOP program that for every natural number x computes the value $g(f(x))$. Is then g necessarily primitive recursive?
	Counterexample: Let g be the (not primitive recursive) function that is only defined at 0, so that $g(0) = 0$ and let f be the zero function.
5 no	Assume there is a LOOP program that for every natural number x computes the value $f(g(x))$. Is then g necessarily primitive recursive?
	Counterexample: f is the zero function and g is a total function that is not primitive recursive. Then $f \circ g = f$ and, therefore, primitive recursive, i.e., LOOP-computable.

Part 2 [Grammar2018]Consider the grammar $G = (N, \Sigma, P, S)$ where $N = \{S, A\}, \Sigma = \{0, 1\}, P = \{S \rightarrow 1AA0, AA \rightarrow AAA, A \rightarrow \varepsilon\}.$

6		no
7	yes	
8		no
9	yes	
10	yes	

Is $1000 \in L(G)$?

Is L(G) finite?

Is the grammar G context-free?

Is there a right-linear grammar G' such that L(G) = L(G')?

Does for every Turing machine M exist a grammar H such that L(M) = L(H)?

Part 3 Decidable2018

Consider the following problems. In each problem below, the input of the problem is the code $\langle M \rangle$ of a Turing machine $M = (Q, \Gamma, \sqcup, \{0, 1\}, \delta, q_0, F)$. Let $L_A(M)$ be the set of words that M accepts in at most 2018 steps. For $w \in \{0, 1\}^*$ let b(w) be the natural number denoted by the bitstring 1w. Problem A: Is $L_A(M)$ finite? Problem B: Is there a μ -recursive function f_M such that for every word $w \in \{0, 1\}^*$ the Turing machine M halts on w if and only if $f_M(b(w)) = 0$? Problem C: Does there exist a right-linear grammar G such that L(M) = L(G)? Problem D: Does M halt on at least one word $w \notin L(M)$?

11 yes	Is A decidable?
	If we find a word $w \in \{0,1\}^*$ of length exactly 2018 that is accepted by M , then any longer word with w as a prefix is also accepted, i.e., $L_A(M)$ is infinite. If such a word cannot be found, then since there is only a finite number of words with length < 2018 , $L_A(M)$ is finite. In other words, A is decidable.
12 yes	Is B decidable?
	Every Turing machine M can be simulated by a WHILE program P_M . If M halts, also P_M halts. We can modify P_M to another WHILE program W_M such that it returns 0 in this case. If M does not halt, also P_M (and therefore W_M) does not halt. Clearly W_M computes a μ -recursive function f_M with the properties given in Problem B . In other words, such an f_M does exist for every Turing machine M . Problem B can trivially be answered by a Turing machine that always says "yes". Problem B is, therefore, decidable.
13 no] Is C decidable?
	Rice Theorem
14 yes] Is D semi-decidable?
	Run M (in parallel) on all words (usual trick of doing one step of the run of all instances of M and starting a new instance of M on the next word). Whenever an instance halts in a non-accepting state, the answer to problem D is "yes".
15 yes	Let $P \subseteq \{0,1\}^*$ be a decision problem such that the restricted Halting problem is is reducible to P. Can it be concluded that P is undecidable?
	Part 4 Complexity2018 Let $f(n) = 20^n + n^{18}$, $g(n) = n^{20} + 18^n$, and $h(n) = n^{20} \cdot \log_2(n^{18})$.
16 no	Is it true that $f(n) = \Theta(g(n))$?
17 no	Is it true that g(n) = O(h(n))?
18 10 19 yes	Is it true that $n! = O(n^n)$?
	Let $f, g: \mathbb{N}^2 \to \mathbb{N}$ be defined as follows
	$f(a,b) := \begin{cases} 1, & \text{if } a < b, \\ 0, & \text{otherwise;} \end{cases} \qquad \qquad g(a,b) := \begin{cases} 0, & \text{if } a < b, \\ 1, & \text{otherwise.} \end{cases}$
20 yes	Are both f and g LOOP computable functions?
21 yes] Is (μf) a LOOP computable function?
	$(\mu f)(b) = b.$
22 no] Is (μg) a LOOP computable function?
	$(\mu g)(0)$ is undefined.

Part 6 OpenComputability2018

The syntax of a LOOP program is given by:

 $P ::= x_i = 0 | x_i := x_j + 1 | x_i := x_j - 1 | P; P | \text{loop } x_i \text{ do } P \text{ end}$

Please note that the arithmetic operations allowed in a LOOP program are only $x_i := x_j + 1$ and $x_i := x_j - 1$.

 $\begin{array}{|c|c|c|c|c|c|} \hline \textbf{24} & 1 \ \textit{Point} & \textit{Write a LOOP program that computes the function } c(n) = \sum_{k=1}^{n} k^2. \\ & & \text{loop } x_1 \ \text{do} & // \ \text{for } x_1 = n \ \text{downto 1} \\ & & \text{loop } x_1 \ \text{do} & // \ \text{Compute } x_0 := x_0 + x_1^2. \\ & & \text{loop } x_1 \ \text{do } x_0 := x_0 + 1; \ \text{end}; \\ & & x_1 := x_1 - 1; \\ & \text{end}; \\ \hline \textbf{25} & 1 \ \textit{Point} & \textit{Let B}(n) \ be \ the \ \textit{minimal number of commands of the form } x_i := x_j + 1 \\ & & \text{that are executed by a LOOP program that computes } c(n). \ \textit{Express B}(n) \\ & & in \ \Omega \ \textit{notation.} \\ & & B(n) = \Omega() \\ \hline & & \text{The result } c(n) = \frac{n(n+1)(2n+1)}{6} \ \text{can only be achieved by executing} \\ & & \Omega(n^3) \ \text{times a command of the form } x_i := x_j + 1. \end{array}$