Problems Solved:

| 41 | 42 | 43 | 44 | 45

Name:

Matrikel-Nr.:

Problem 41. Analyze the (worst-case) time and space complexity of a Turing maschine which computes the sum of two numbers. The input $(k, m) \in \mathbb{N} \times \mathbb{N}$ is encoded as $1^k 01^m$ and trailed by \sqcup 's.

Note that you are expected to provide an explicit definition of the TM that is analyzed.

Problem 42. Let T(n) be the total number of times that the instruction a[i,j] = a[i,j] + 1 is executed during the execution of P(n,0,0).

end procedure

- 1. Compute T(1), T(2) and T(4).
- 2. Give a recurrence relation for T(n).
- 3. Solve your recurrence relation for T(n) in the special case where $n = 2^m$ is a power of two.
- 4. Use the Master Theorem to determine asymptotic bounds for T(n).

Problem 43. Given two algorithms A and B for computing the same problem. For their time complexity we have

$$t_A(n) = \sqrt{n}$$
 and $t_B(n) = 2\sqrt{\log_2 n}$.

- 1. Construct a table for $t_A(n)$ and $t_B(n)$. Can you give a value N such that for all $n \ge N$ one of the algorithms always seems faster than the other one?
- 2. Based on your result of the question above, you may conjecture $t_A(n) = O(t_B(n))$ and/or $t_B(n) = O(t_A(n))$. Prove your conjecture(s) formally on the basis of the O notation.

Hint: remember that for all x, y > 0 we have

$$x = 2^{\log_2 x}$$

Berechenbarkeit und Komplexität, WS2018

$$\log_2 x^y = y \cdot \log_2 x$$
$$\sqrt{x} = x^{\frac{1}{2}}$$
$$x \le y \implies 2^x \le 2^y$$

which may become handy in your proof.

Problem 44.

- 1. Consider the probability space $\Omega = \{0,1\}^n$ of all strings over $\{0,1\}$ of length n where each string occurs with the same probability 2^{-n} . Let $X : \Omega \to \mathbb{N}$ be a random variable that gives the position of the first occurrence of the symbol 1 in a string, if 1 occurs at all. For completeness, we also define that $X(0^n) = 0$. Positions are numbered from 1 to n. Give a term (not necessarily in closed form, i. e., the solution may use the summation sign) for the expected value E(X) of the random variable X and justify your answer.
- 2. Evaluate the sum

$$S = \sum_{k=1}^{n} \frac{1}{2^k} k$$

in *closed form*, i.e., find a formula for the sum which does not involve a summation sign.

Hint: Take the function

$$F(z) := \sum_{k=0}^{n} \left(\frac{z}{2}\right)^{k}.$$

and let F'(z) denote the first derivative of F(z). We then have S = F'(1). Why?

Thus, it suffices to compute a closed form of F(z), using your high-school knowledge about geometric series. Then compute the first derivative F'(z) of this form, and, finally, evaluate F'(1).

Note that the index for the geometric series starts at k = 0.

Problem 45. Let $M = (Q, \Gamma, \sqcup, \Sigma, \delta, q_0, F)$ be a Turing machine with $Q = \{q_0, q_1\}, \Sigma = \{0, 1\}, \Gamma = \{0, 1, \sqcup\}, F = \{q_1\}$ and the following transition function δ :

- 1. Determine the (worst-case) time complexity T(n) and the (worst-case) space complexity S(n) of M.
- 2. Determine the average-case time complexity $\overline{T}(n)$ and the average-case space complexity $\overline{S}(n)$ of M. (Assume that all 2^n input words of length n occur with the same probability, i.e., $1/2^n$.)
- 3. Bonus: Using results from Problem 44, express all answers in closed form, i.e., without the use of the summation symbol.

Berechenbarkeit und Komplexität, WS2018