Problems Solved:

41	42	43	44	45

Name:

Matrikel-Nr.:

Problem 41. Analyze the (worst-case) time and space complexity of a Turing maschine which computes the sum of two numbers. The input $(k, m) \in \mathbb{N} \times \mathbb{N}$ is encoded as $1^{k} 01^{m}$ and trailed by \sqcup 's.
Note that you are expected to provide an explicit definition of the TM that is analyzed.

Problem 42. Let $T(n)$ be the total number of times that the instruction $a[i, j]=a[i, j]+1$ is executed during the execution of $P(n, 0,0)$.

```
procedure P(n, x, y)
    if n >= 1 then
        for (i = x; i < x+n; i++)
            for (j = y; j < y+n; j++)
                a[i,j] = a[i,j] + 1
            h = floor( n / 2)
            P(h, x, y )
            P(h, x+h, y )
            P(h, x, y+h)
            P(h, x+h, y+h)
    end if
end procedure
```

1. Compute $T(1), T(2)$ and $T(4)$.
2. Give a recurrence relation for $T(n)$.
3. Solve your recurrence relation for $T(n)$ in the special case where $n=2^{m}$ is a power of two.
4. Use the Master Theorem to determine asymptotic bounds for $T(n)$.

Problem 43. Given two algorithms A and B for computing the same problem.
For their time complexity we have

$$
t_{A}(n)=\sqrt{n} \quad \text { and } \quad t_{B}(n)=2^{\sqrt{\log _{2} n}} .
$$

1. Construct a table for $t_{A}(n)$ and $t_{B}(n)$. Can you give a value N such that for all $n \geq N$ one of the algorithms always seems faster than the other one?
2. Based on your result of the question above, you may conjecture $t_{A}(n)=$ $O\left(t_{B}(n)\right)$ and $/$ or $t_{B}(n)=O\left(t_{A}(n)\right)$. Prove your conjecture(s) formally on the basis of the O notation.

Hint: remember that for all $x, y>0$ we have

$$
x=2^{\log _{2} x}
$$

$$
\begin{gathered}
\log _{2} x^{y}=y \cdot \log _{2} x \\
\sqrt{x}=x^{\frac{1}{2}} \\
x \leq y \Rightarrow 2^{x} \leq 2^{y}
\end{gathered}
$$

which may become handy in your proof.

Problem 44.

1. Consider the probability space $\Omega=\{0,1\}^{n}$ of all strings over $\{0,1\}$ of length n where each string occurs with the same probability 2^{-n}. Let X : $\Omega \rightarrow \mathbb{N}$ be a random variable that gives the position of the first occurrence of the symbol 1 in a string, if 1 occurs at all. For completeness, we also define that $X\left(0^{n}\right)=0$. Positions are numbered from 1 to n. Give a term (not necessarily in closed form, i.e., the solution may use the summation sign) for the expected value $E(X)$ of the random variable X and justify your answer.
2. Evaluate the sum

$$
S=\sum_{k=1}^{n} \frac{1}{2^{k}} k
$$

in closed form, i.e., find a formula for the sum which does not involve a summation sign.
Hint: Take the function

$$
F(z):=\sum_{k=0}^{n}\left(\frac{z}{2}\right)^{k}
$$

and let $F^{\prime}(z)$ denote the first derivative of $F(z)$. We then have $S=F^{\prime}(1)$. Why?
Thus, it suffices to compute a closed form of $F(z)$, using your high-school knowledge about geometric series. Then compute the first derivative $F^{\prime}(z)$ of this form, and, finally, evaluate $F^{\prime}(1)$.
Note that the index for the geometric series starts at $k=0$.
Problem 45. Let $M=\left(Q, \Gamma, \sqcup, \Sigma, \delta, q_{0}, F\right)$ be a Turing machine with $Q=$ $\left\{q_{0}, q_{1}\right\}, \Sigma=\{0,1\}, \Gamma=\{0,1, \sqcup\}, F=\left\{q_{1}\right\}$ and the following transition function δ :

δ	0	1	\sqcup
q_{0}	$q_{0} 0 R$	$q_{1} 1 R$	-
q_{1}	-	-	-

1. Determine the (worst-case) time complexity $T(n)$ and the (worst-case) space complexity $S(n)$ of M.
2. Determine the average-case time complexity $\bar{T}(n)$ and the average-case space complexity $\bar{S}(n)$ of M. (Assume that all 2^{n} input words of length n occur with the same probability, i.e., $1 / 2^{n}$.)
3. Bonus: Using results from Problem 44 express all answers in closed form, i.e., without the use of the summation symbol.
