Gruppe	Hemmecke (10:15)	Hemmecke (11:00)	Pop	pov	
Name		Matrikel	SKZ		

Klausur 1 Berechenbarkeit und Komplexität

 $30. \ \mathrm{November} \ 2018$

Part 1 NFSM2018

1

 $\mathbf{2}$

3 4

5

6

7

8

yes

yes

yes

no

Let N be the nondeterministic finite state machine

 $(\{q_0, q_1, q_2, q_3, q_4, q_5, q_6, q_7\}, \{0, 1\}, \nu, \{q_0\}, \{q_1, q_3, q_5, q_7\}),$

whose transition function ν is given below.

	Follow the states $q_0, q_1, q_3, q_5, q_4, q_6, q_7$.
yes	Is $L(N)$ finite?
yes	Does there exist a regular expression r such that $L(r) = \overline{L(N)} = \{0,1\}^* \setminus L(N)$?
	L(N) is regular and so is its complement.
yes	Is $\overline{L(N)}$ recursively enumerable?

L(N) is regular. Hence, $\overline{L(N)}$ is regular, and thus also recursively enumerable.

yes Is there a deterministic finite state machine M with less than 2018 states such that L(M) = L(N)?

According to the subset construction, there must be a DFSM with at most $2^8 = 256$ states.

Is there an enumerator Turing machine G such that Gen(G) = L(N)? Does there exists a deterministic finite state machine D such that $L(D) = L(N) \circ \overline{L(N)}$?

L(N) and $\overline{L(N)}$ are both regular. Concatenation of two regular languages gives a regular language.

Part 2 Computable2018

Let M_1 be a Turing machine such that it accepts a word, if and only if it is a palindrome. A palindrome is a word that can be read the same way from either

direction, left-to-right or right-to-left. For example, wow, solos, level, kayak, ABBA, otto and redder are palindromes. Let M_2 be a Turing machine such that it accepts a word, if and only if it is a tautonym. A tautonym is a word or a name made up of two identical parts, such as soso, tomtom, BadenBaden or PagoPago. We assume that the alphabets of M_1 and M_2 coincide.

9 yes 10 yes 11 no	Is $L(M_1) \cap L(M_2)$ recursively enumerable? Is $L(M_1) \cap L(M_2)$ recursive? Is $L(M_1) \cap L(M_2)$ finite?
	There can be arbitrarily large words being palindromes and tautonyms at the same time.
12 no	Let L be a recursively enumerable language. Can it be concluded that $L(M_1) \cap L(M_2) \cap L$ is recursive?
	Intersection of recursive and recursively enumerable languages is recursively enumerable but not necessarily recursive.
13 no	Is every μ -recursive function also a primitive recursive function?
14 no	Does there exist a μ -recursive function that is not WHILE computable?
15 yes	Is every primitive recursive function also Turing-computable?
Par Let	t 3 Pumping2018
16 yes	$\begin{split} L_1 &= \left\{ \left. a^m b^n a^{2m} \right m, n \in \mathbb{N}, m < 2018 \right\}, \\ L_2 &= \left\{ \left. a^m b^n a^{2m} \right m, n \in \mathbb{N}, n < 2018 \right\}. \end{split}$ Is there a regular expression r such that $L(r) = L_1$?
Let	$\begin{split} L_1 &= \left\{ \left. a^m b^n a^{2m} \right m, n \in \mathbb{N}, m < 2018 \right\}, \\ L_2 &= \left\{ \left. a^m b^n a^{2m} \right m, n \in \mathbb{N}, n < 2018 \right\}. \end{split}$ Is there a regular expression r such that $L(r) = L_1$? $r &= b^* + ab^*aa + aab^*aaaa + \dots + a^{2017}b^*a^{4034}$
16 yes 17 no	$\begin{split} L_1 &= \left\{ \left. a^m b^n a^{2m} \right m, n \in \mathbb{N}, m < 2018 \right\}, \\ L_2 &= \left\{ \left. a^m b^n a^{2m} \right m, n \in \mathbb{N}, n < 2018 \right\}. \end{split}$ Is there a regular expression r such that $L(r) = L_1$? $r &= b^* + ab^*aa + aab^*aaaa + \dots + a^{2017}b^*a^{4034}$ Is there a deterministic finite state machine M such that $L(M) = L_2$?
16 yes 17 no	$\begin{split} L_1 &= \left\{ \left. a^m b^n a^{2m} \right m, n \in \mathbb{N}, m < 2018 \right\}, \\ L_2 &= \left\{ \left. a^m b^n a^{2m} \right m, n \in \mathbb{N}, n < 2018 \right\}. \end{split}$ Is there a regular expression r such that $L(r) = L_1$? $r &= b^* + ab^*aa + aab^*aaaa + \dots + a^{2017}b^*a^{4034}$ Is there a deterministic finite state machine M such that $L(M) = L_2$? L_2 is not regular.
16 yes 17 no 18 yes 19 yes 20 yes	$\begin{split} L_1 &= \left\{ \left. a^m b^n a^{2m} \right m, n \in \mathbb{N}, m < 2018 \right\}, \\ L_2 &= \left\{ \left. a^m b^n a^{2m} \right m, n \in \mathbb{N}, n < 2018 \right\}. \end{split}$ Is there a regular expression r such that $L(r) = L_1$? $r &= b^* + ab^*aa + aab^*aaaa + \dots + a^{2017}b^*a^{4034}$ Is there a deterministic finite state machine M such that $L(M) = L_2$? L_2 is not regular. Is there an enumerator Turing machine G such that $Gen(G) = L_1$? Is there an Turing machine M such that $L(M) = L_1 \cup L_2$? Is there an deterministic finite state machine D such that $L(D) = L_1 \cap L_2$?

Part 4 WhileLoop2018

Let T_1 and T_2 be two Turing machines. Assume that T_1 and T_2 compute partial functions $t_1, t_2 : \mathbb{N} \to \mathbb{N}$, respectively, and that t_1 is a total function whereas t_2 is undefined for at least one input $i \in \mathbb{N}$. (We assume that a natural number n is encoded on the tape as a string of n letters 0.)

21		no	Can it be concluded that t_1 is LOOP-computable?
			The Ackermann function ack is a total function that is not primitive recursive. Hence, if T_1 is the Turing machine that computes $t_1(n) = \operatorname{ack}(n, n)$, then we can assume that T_1 halts on every input. However, since t_1 is not primitive recursive, there cannot be a corresponding LOOP-program.
22	yes		Is there a WHILE-program that computes t_2 ?
			Every Turing computable function can be simulated by a WHILE-program.
23	yes		Is the composition $t_1 \circ t_2$ a μ -recursive function? Hint: $(t_1 \circ t_2)(x) = t_1(t_2(x))$, if t_2 is defined on x and undefined otherwise.
		Pa ((2	rt 5 Open2018 2 points))
		Let $\{q_0$	$\mathcal{L} N = (Q, \Sigma, \delta, q_0, F)$ be a nondeterministic finite state machine with $Q = \{0, q_1, q_2, q_3\}, \Sigma = \{0, 1\}, S = \{q_0\}, F = \{q_0, q_3\}, and transition function \delta as$

1. Let X_i denote the regular expression for the language accepted by N when starting in state q_i .

Write down an equation system for X_0, \ldots, X_3 .

2. Give a regular expression r such that L(r) = L(N) (you may apply Arden's Lemma to the result of 1).

$$\begin{split} X_0 &= (0+1)X_1 + 1X_2 + \varepsilon \\ X_1 &= (0+1)X_1 + 0X_2 \\ X_2 &= 0X_3 \\ X_3 &= \varepsilon \\ r &= \varepsilon + 10 + (0+1)(0+1)^* 00 \end{split}$$