| Gruppe | Hemmecke (10:15) | Hemmecke (11:00) | Popov | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Name | | Matrikel | | | | | | SKZ | |

Klausur 1
 Berechenbarkeit und Komplexität

30. November 2018

Part 1 NFSM2018

Let N be the nondeterministic finite state machine

$$
\left(\left\{q_{0}, q_{1}, q_{2}, q_{3}, q_{4}, q_{5}, q_{6}, q_{7}\right\},\{0,1\}, \nu,\left\{q_{0}\right\},\left\{q_{1}, q_{3}, q_{5}, q_{7}\right\}\right),
$$

whose transition function ν is given below.

$\mathbf{1}$		no	Is $1001100111 \in L(N) ?$

The sequence is not defined by the transition.

Follow the states $q_{0}, q_{1}, q_{3}, q_{5}, q_{4}, q_{6}, q_{7}$.

$\mathbf{3}$	yes	
$\mathbf{4}$	yes	

Is $L(N)$ finite?
Does there exist a regular expression r such that $L(r)=\overline{L(N)}=\{0,1\}^{*} \backslash$ $L(N)$?
$L(N)$ is regular and so is its complement.

$\mathbf{5}$	yes	

$L(N)$ is regular. Hence, $\overline{L(N)}$ is regular, and thus also recursively enumerable.

| $\mathbf{6}$ | yes | \quad Is there a deterministic finite state machine M with less than 2018 states |
| :--- | :--- | :--- | such that $L(M)=L(N)$?

According to the subset construction, there must be a DFSM with at most $2^{8}=256$ states.

$\mathbf{7}$	yes	
$\mathbf{8}$	yes	

Is there an enumerator Turing machine G such that $G e n(G)=L(N)$?
Does there exists a deterministic finite state machine D such that $L(D)=$ $L(N) \circ \overline{L(N)}$?
$L(N)$ and $\overline{L(N)}$ are both regular. Concatenation of two regular languages gives a regular language.

Part 2 Computable2018
Let M_{1} be a Turing machine such that it accepts a word, if and only if it is a palindrome. A palindrome is a word that can be read the same way from either
direction, left-to-right or right-to-left. For example, wow, solos, level, kayak, ABBA, otto and redder are palindromes.
Let M_{2} be a Turing machine such that it accepts a word, if and only if it is a tautonym. A tautonym is a word or a name made up of two identical parts, such as soso, tomtom, BadenBaden or PagoPago.
We assume that the alphabets of M_{1} and M_{2} coincide.

$\mathbf{9}$	yes	
$\mathbf{1 0}$	yes	
$\mathbf{1 1}$		no

> Is $L\left(M_{1}\right) \cap L\left(M_{2}\right)$ recursively enumerable?
> Is $L\left(M_{1}\right) \cap L\left(M_{2}\right)$ recursive?
> Is $L\left(M_{1}\right) \cap L\left(M_{2}\right)$ finite?

There can be arbitrarily large words being palindromes and tautonyms at the same time.

Let L be a recursively enumerable language. Can it be concluded that $L\left(M_{1}\right) \cap L\left(M_{2}\right) \cap L$ is recursive?

Intersection of recursive and recursively enumerable languages is recursively enumerable but not necessarily recursive.

$\mathbf{1 3}$		no
$\mathbf{1 4}$		no
$\mathbf{1 5}$	yes	

Is every μ-recursive function also a primitive recursive function?
Does there exist a μ-recursive function that is not WHILE computable? Is every primitive recursive function also Turing-computable?

Part 3 Pumping2018
Let

$$
\begin{aligned}
& L_{1}=\left\{a^{m} b^{n} a^{2 m} \mid m, n \in \mathbb{N}, m<2018\right\} \\
& L_{2}=\left\{a^{m} b^{n} a^{2 m} \mid m, n \in \mathbb{N}, n<2018\right\}
\end{aligned}
$$

$$
\begin{array}{|l|l|l|l}
\hline \mathbf{1 6} & \text { yes } & \quad \text { Is there a regular expression } r \text { such that } L(r)=L_{1} \text { ? } \\
\hline
\end{array}
$$

$$
r=b^{*}+a b^{*} a a+a a b^{*} a a a a+\cdots+a^{2017} b^{*} a^{4034}
$$

| $\mathbf{1 7}$ | | no \quad Is there a deterministic finite state machine M such that $L(M)=L_{2}$? |
| :--- | :--- | :--- | :--- |

L_{2} is not regular.

$\mathbf{1 8}$	yes	
$\mathbf{1 9}$	yes	
$\mathbf{2 0}$	yes	

Is there an enumerator Turing machine G such that $\operatorname{Gen}(G)=L_{1}$?
Is there an Turing machine M such that $L(M)=L_{1} \cup L_{2}$?
Is there an deterministic finite state machine D such that $L(D)=L_{1} \cap L_{2}$?
The language $L_{1} \cap L_{2}$ is finite and thus regular.

Part 4 WhileLoop2018
Let T_{1} and T_{2} be two Turing machines. Assume that T_{1} and T_{2} compute partial functions $t_{1}, t_{2}: \mathbb{N} \rightarrow \mathbb{N}$, respectively, and that t_{1} is a total function whereas t_{2} is undefined for at least one input $i \in \mathbb{N}$. (We assume that a natural number n is encoded on the tape as a string of n letters 0 .)

The Ackermann function ack is a total function that is not primitive recursive. Hence, if T_{1} is the Turing machine that computes $t_{1}(n)=\operatorname{ack}(\mathrm{n}, \mathrm{n})$, then we can assume that T_{1} halts on every input. However, since t_{1} is not primitive recursive, there cannot be a corresponding LOOP-program.

Is there a WHILE-program that computes t_{2} ?
Every Turing computable function can be simulated by a WHILE-program.

Is the composition $t_{1} \circ t_{2}$ a μ-recursive function?
Hint: $\left(t_{1} \circ t_{2}\right)(x)=t_{1}\left(t_{2}(x)\right)$, if t_{2} is defined on x and undefined otherwise.
Part 5 Open2018
((2 points))
Let $N=\left(Q, \Sigma, \delta, q_{0}, F\right)$ be a nondeterministic finite state machine with $Q=$ $\left\{q_{0}, q_{1}, q_{2}, q_{3}\right\}, \Sigma=\{0,1\}, S=\left\{q_{0}\right\}, F=\left\{q_{0}, q_{3}\right\}$, and transition function δ as given below.

1. Let X_{i} denote the regular expression for the language accepted by N when starting in state q_{i}.
Write down an equation system for X_{0}, \ldots, X_{3}.
2. Give a regular expression r such that $L(r)=L(N)$ (you may apply Arden's Lemma to the result of 1).

$$
\begin{aligned}
X_{0} & =(0+1) X_{1}+1 X_{2}+\varepsilon \\
X_{1} & =(0+1) X_{1}+0 X_{2} \\
X_{2} & =0 X_{3} \\
X_{3} & =\varepsilon \\
r & =\varepsilon+10+(0+1)(0+1)^{*} 00
\end{aligned}
$$

