
BeKomp Problem Set 6 due date: 06/07 Dezember 2018

Problems Solved: 26 27 28 29 30

Name:

Matrikel-Nr.:

Problem 26. Let Q(x) =
{
y ∈ N

∣∣x ≤ y2} ⊆ N and f : N→ N be the (partial)
function

f(x) =

{
minQ(x) if Q(x) 6= ∅,
unde�ned otherwise.

1. Is f loop computable?

2. Is f a primitive recursive function?

3. Is f a while computable function?

4. Is f a µ-recursive function?

In each case justify your answer. If it is yes, give a corresponding program and/or
an explicit de�nition as a (primitive/µ-) recursive function.
Remark: When de�ning f , you are allowed to use the De�nition 29 and 30
from the lecture notes and the primitive recursive functions (respectively loop
programs computing these functions)

m : N2 → N, (x, y) 7→ x · y

u : N2 → N,

u(x, y) =

{
0 if x = y,

1 if x 6= y.

and IF : N3 → N,

IF (x, y, z) =

{
y if x = 0

z otherwise.

Other functions or rules are forbidden.

Problem 27. Construct a DFSM recognizing L(G) whereG = ({A,B} , {a, b} , P,A)
with the production rules P given by

A→ aA|bB|b,
B → aA|aB.

Hint: Start by a constructing a NFSM N . Then turn N into a DFSM D such
that L(G) = L(N) = L(D).
�Construct� means to explain how you turn the grammar into a DFSM. Simply
writing down a DFSMD with the required property, does not count as a solution
unless you prove that L(G) = L(D).

Problem 28. Consider the grammar G = (N,Σ, P, S) where N = {S}, Σ =
{a, b, c, d}, P = {S → a, S → b, S → dScSd}.

Berechenbarkeit und Komplexität, WS2018 1

BeKomp Problem Set 6 due date: 06/07 Dezember 2018

(a) Is daacbd ∈ L(G)?

(b) Is dddacadcbdcbd ∈ L(G)?

(c) Does every element of L(G) contain an even number of occurrences of d?

(d) Is L(G) regular?

(e) Is L(G) recursive?

Justify your answers.

Problem 29. Consider the following term rewriting system:

a(x, s(y))→ a(s(x), y) (1)

a(x, 0)→ x (2)

m(x, s(y))→ a(m(x, y), x) (3)

m(x, 0)→ 0 (4)

Show that

m(s(s(0)), s(0))
∗→ s(s(0))

by a suitable reduction sequence. For each reduction step, underline the subterm
that you reduce, and indicate the reduction rule and the matching substitution
σ used explicitly.

Problem 30. According to De�nition 32 of the lecture notes, there are no
natural numbers in Lambda calculus. However, natural numbers can be encoded
(known as Church encoding) as �Church numerals� (see below), i.e., as functions
n that map any function f to its n-fold application fn = f ◦ . . . ◦ f . Note that
we denote such a �natural number� representation via boldface symbols in order
to emphasize that these are lambda terms. In other words, we de�ne Church
numerals as follows. By letting �application� bind stronger than �abstraction�,
we avoid writing parentheses where appropriate.

0 = λf.λx.x

1 = λf.λx.fx

2 = λf.λx.f(fx)

3 = λf.λx.f(f(fx))

4 = λf.λx.f(f(f(fx)))

...

n = λf.λx. f(· · · (f︸ ︷︷ ︸
n-fold

x) · · ·)

1. De�ne a lambda term add that represents addition of �Church numerals�.

2. Show the intermediate steps of a reduction from ((add 2) 1) to 3.

Hint: a bit of literature research may help.

Berechenbarkeit und Komplexität, WS2018 2

