Problems Solved:

11 | 12 | 13 | 14 | 15

Name:

Matrikel-Nr.:

Problem 11. Let $M_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$ and $M_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$ be two DFSM over the alphabet Σ . Let $L(M_1)$ and $L(M_2)$ be the languages accepted by M_1 and M_2 , respectively.

Construct a DFSM $M = (Q, \Sigma, \delta, q, F)$ whose language L(M) is the intersection of $L(M_1)$ and $L(M_2)$. Write down Q, δ, q , and F explicitly.

Hint: M simulates the parallel execution of M_1 and M_2 . For that to work, M "remembers" in its state the state of M_1 as well as the state of M_2 . This can be achieved by defining $Q = Q_1 \times Q_2$.

Demonstrate your construction with the following DFSMs.

Problem 12. Let *L* be the language of properly nested strings over the alphabet $\Sigma = \{[,], o\}$. A word *w* is *properly nested* if it contains as many opening as closing brackets and every prefix of *w* contains at least as many opening brackets [as closing]. (Example: oo[][o[o]] is properly nested, but oo][is not.) Show by means of the Pumping Lemma that *L* is not regular.

Problem 13. Let M_1 be the DFSM with states $\{q_0, q_1, q_2\}$ whose transition graph is given below. Determine a regular expression r such that $L(r) = L(M_1)$. Show the *derivation* of the the final result by the technique based on Arden's Lemma (see lecture notes).

Problem 14. Let r be the following regular expression.

$$(ab+ba)^*+bb$$

Berechenbarkeit und Komplexität, WS2018

Construct a nondeterministic finite state machine N such that L(N) = L(r). Show the derivation of the result by following the technique presented in the proof of the theorem *Equivalence of Regular Expressions and Automata* (see lecture notes).

Problem 15. Construct a Turing machine $M = (Q, \Gamma, \sqcup, \{0, 1\}, \delta, q_0, F)$ such that $L(M) = \{1^k 0 1^{k+1} | k \in \mathbb{N}\}$. Write down Q, Γ, F and δ explicitly.