Problems Solved:

6 7 8 9 10

Name:

Matrikel-Nr.:

Problem 6. Let *L* be the set of all strings $x \in \{a, b\}^*$ with $|x| \ge 3$ whose third symbol from the right is *b*. For example, *babaa* and *bbb* are elements of *L*, but *bb* and *baba* are not.

- 1. Construct a NFSM N such that L(N) = L. (4 states are sufficient.)
- 2. Construct a DFSM D such that L(D) = L. (8 states are sufficient.)

Problem 7. Construct a deterministic finite state machine M over $\Sigma = \{0, 1\}$ such that L(M) consists of all words that do not contain the string 01. *Hint:* Start by constructing a nondeterministic finite state machine N that recogizes the words that do contain the string 01. Proceed by converting your nondeterministic machine N to a deterministic machine D that accepts the same language. Now you are left with the task of coming up with a machine M whose language is precisely the complement of the language of D. This can be done by a small modification of D.

Problem 8. Construct explicitly a deterministic finite state machine $D = (Q, \Sigma, \delta, S, F)$ with alphabet $\Sigma = \{a, b, c\}$, such that the words of L(D) contain an even number of *a*'s, an even number of *b*'s, and an even number of *c*'s. For example, *aacc*, *ccaaccbbaa*, *aaaabb*, *abcabc*, *abba* are from L(D) and *babc*, *cabab*, *caacbaabba* are not from L(D).

Problem 9. Convert the following NFA to DFA. It suffices to give the resulting transition graph.

Berechenbarkeit und Komplexität, WS2018

Problem 10. Let the DFSM $M = (Q, \Sigma, \delta, q_0, F)$ be given by $Q = \{q_0, q_1, q_2, q_3, q_4, q_5, q_6, q_7\}$, $\Sigma = \{0, 1\}, F = \{q_5, q_6\}$ and the following transition function $\delta : Q \times \Sigma \to Q$:

Construct a minimal DFSM D such that L(M) = L(D) using Algorithm MIN-IMIZE. (cf. Section 2.3 *Minimization of Finite State Machines*)