Problems Solved:

$$
\begin{array}{|l|l|l|l|l|}
\hline 6 & 7 & 8 & 9 & 10 \\
\hline
\end{array}
$$

Name:

Matrikel-Nr.:

Problem 6. Let L be the set of all strings $x \in\{a, b\}^{*}$ with $|x| \geq 3$ whose third symbol from the right is b. For example, babaa and $b b b$ are elements of L, but $b b$ and $b a b a$ are not.

1. Construct a NFSM N such that $L(N)=L$. (4 states are sufficient.)
2. Construct a DFSM D such that $L(D)=L$. (8 states are sufficient.)

Problem 7. Construct a deterministic finite state machine M over $\Sigma=\{0,1\}$ such that $L(M)$ consists of all words that do not contain the string 01. Hint: Start by constructing a nondeterministic finite state machine N that recogizes the words that do contain the string 01 . Proceed by converting your nondeterministic machine N to a deterministic machine D that accepts the same language. Now you are left with the task of coming up with a machine M whose language is precisely the complement of the language of D. This can be done by a small modification of D.

Problem 8. Construct explicitly a deterministic finite state machine $D=$ $(Q, \Sigma, \delta, S, F)$ with alphabet $\Sigma=\{a, b, c\}$, such that the words of $L(D)$ contain an even number of a 's, an even number of b 's, and an even number of c 's. For example, aacc, ccaaccbbaa, aaaabb, abcabc, abba are from $L(D)$ and $b a b c$, cabab, caacbaabba are not from $L(D)$.

Problem 9. Convert the following NFA to DFA. It suffices to give the resulting transition graph.

Problem 10. Let the DFSM $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$ be given by $Q=\left\{q_{0}, q_{1}, q_{2}, q_{3}, q_{4}, q_{5}, q_{6}, q_{7}\right\}$, $\Sigma=\{0,1\}, F=\left\{q_{5}, q_{6}\right\}$ and the following transition function $\delta: Q \times \Sigma \rightarrow Q$:

Construct a minimal DFSM D such that $L(M)=L(D)$ using Algorithm Minimize. (cf. Section 2.3 Minimization of Finite State Machines)

