
Event-B and Refinement
Seminar Formal Methods II

Johann Gschnaller

June 27, 2018



Recap Mathematical foundation Event-B modelling Refinement References

Overview

1 Recap

2 Mathematical foundation

3 Event-B modelling

4 Refinement

5 References



Recap Mathematical foundation Event-B modelling Refinement References

1 Recap

2 Mathematical foundation

3 Event-B modelling

4 Refinement

5 References



Recap Mathematical foundation Event-B modelling Refinement References

Event-B and Rodin

Event-B is a formal method for system modelling and analysis.
A notation used for developing mathematical models of
discrete transition systems, i.e., a state based modelling
approach where the transitions are described by events
Basic language is predicate logic
Problem modelling using (typed) set theory
Use of refinement to represent the system at different
abstraction levels
Mathematical proofs to verify invariants and consistency
between different refinement levels



Recap Mathematical foundation Event-B modelling Refinement References

Event-B and the B-method have been used in several safety-critical
systems. Some industrial applications can be found at the website
http://wiki.event-b.org/index.php/Industrial_Projects.

The IDE Rodin1 can be used to develop such Event-B models.

1Rodin can be downloaded at the website https://sourceforge.net/
projects/rodin-b-sharp/files/Core_Rodin_Platform/.

http://wiki.event-b.org/index.php/Industrial_Projects
https://sourceforge.net/projects/rodin-b-sharp/files/Core_Rodin_Platform/
https://sourceforge.net/projects/rodin-b-sharp/files/Core_Rodin_Platform/


Recap Mathematical foundation Event-B modelling Refinement References

Refinement (basic principle)

Refinement is a hierarchical modelling approach.
Start at an abstraction level where reasoning is simple
Gradually add complexity to abstract models such that they
get closer to the reality
Nice analogy: view through a microscope. The object of
interest does not change, but the more one zooms into a
specific part, the more details are revealed (refinements
represent the different zoom levels)
Transform models such that they are easier to implement2

2It is possible to generate program code from Event-B models that is correct
by construction. For more details consult the paper by Fürst et al. [FHB+14].



Recap Mathematical foundation Event-B modelling Refinement References

1 Recap

2 Mathematical foundation

3 Event-B modelling

4 Refinement

5 References



Recap Mathematical foundation Event-B modelling Refinement References

First-order predicate logic

A great summary of the mathematical toolkit supported by
Event-B can be found in Robinson [Rob10].

Event-B supports the usual first-order logic predicates:
Primitives: > and ⊥
Operators: ¬,∧,∨,⇒,⇔

Equality: = and 6=
Quantifiers: ∀x · P(x) and ∃y · Q(y)



Recap Mathematical foundation Event-B modelling Refinement References

Set theory

Apart from predicate logic, Event-B uses set theory as its basic
modelling language.

Many set operations are available: set comprehension
({s ∈ S | P(s)}), union (∪), intersection (∩), Cartesian product
(×), power set (P), cardinality (card(S)), set membership (∈),
subset (⊂), set partitions, …



Recap Mathematical foundation Event-B modelling Refinement References

Relations and functions

Event-B offers a variety of different types of relations and functions
on sets, each of them with different additional properties.

A whole zoo of function and relation constructions is available:
total/partial injections/surjections, bijective relations, range,
domain, composition, …



Recap Mathematical foundation Event-B modelling Refinement References

Arithmetic and types

The standard arithmetic operations are defined for the built-in sets
N,N1, and Z.

Variables in Event-B are strongly typed. A type can be either
a build-in type (BOOL,N,N1,Z) or
an user-defined type (e.g. an enumerated set).

In contrast to most strongly typed programming languages, the
variable type is not given at the declaration, but inferred from
constraining properties such as axioms and invariants.



Recap Mathematical foundation Event-B modelling Refinement References

Well-definedness

Every formula in Event-B must be well-defined. The
well-definedness predicate for a formula f , denoted by L(f ),
describes the condition when the formula can be safely evaluated.

Formula Well-definedness condition

x >
¬P L(P)

∀x · P ∀x · L(P)

E1 ÷ E2 L(E1) ∧ L(E2) ∧ E2 6= 0
card(S) L(S) ∧ finite(S)



Recap Mathematical foundation Event-B modelling Refinement References

Sequent

To guarantee that a formal model fulfils its specified properties,
Event-B defines so called proof obligations. Proof obligations are
sequents of the form

H ` G,

where G is a goal that must hold within the set of hypothesis H.
Such proof obligations must be discharged using certain inference
rules (not part of the presentation).



Recap Mathematical foundation Event-B modelling Refinement References

1 Recap

2 Mathematical foundation

3 Event-B modelling

4 Refinement

5 References



Recap Mathematical foundation Event-B modelling Refinement References

Event-B model

An Event-B model is a complete mathematical description of the
discrete transition system. A model consists of several
components, each of which can be either:

Context: Describes the static part of a model
Machine: Specifies the dynamic behaviour of a model



Recap Mathematical foundation Event-B modelling Refinement References

In order to facilitate a stepwise modelling approach, the following
relations are defined for machines and contexts.



Recap Mathematical foundation Event-B modelling Refinement References

Context

Complete formal description of a context (? denotes an optional
part):



Recap Mathematical foundation Event-B modelling Refinement References

Extends A context can extend other contexts to inherit their
sets/constants/axioms.

Sets User-defined data types. The identifier of a set
implicitly creates a new constant.

Constants Declared constants. The type must be declared in
the axioms section.

Axioms A list of predicates (called axioms). Axioms are
statements that are assumed to be true in the model.
They can be used as hypotheses in proofs.

Theorems Once proven, theorems can be used like axioms.



Recap Mathematical foundation Event-B modelling Refinement References



Recap Mathematical foundation Event-B modelling Refinement References

Machine
Complete formal description of a machine (? denotes an optional
part):



Recap Mathematical foundation Event-B modelling Refinement References

Refines A machine can be a refinement of another machine
(a more concrete version).

Sees The contexts that this machine has access to.
Variables Variables that change their values over time (state of

the machine). Initialised in a special event.
Invariants Predicates that must be true in every reachable state.
Theorems Same as in the case of contexts.

Events Assigns new values to a subset of the variables. Only
active when its guards are true.

Variants Used to guarantee termination. Termination means
that a chosen set of events are enabled only a finite
number of times.



Recap Mathematical foundation Event-B modelling Refinement References



Recap Mathematical foundation Event-B modelling Refinement References

Event

Complete formal description of an event (? denotes an optional
part):



Recap Mathematical foundation Event-B modelling Refinement References

Status One of the values ordinary , convergent, anticipated .
The latter two are useful in the presence of variants.

Refines Designates the event(s) of the abstract machine that
this event refines (special SKIP event for genuinely
new events).

Any A number of parameters for this event.
Where A number of predicates (called guards) that specify

when the event is enabled.
With In case an event refines a more abstract event, the

abstract parameters must receive a value in the
refined event. Such assignments are called witnesses.
The label of witnesses have a special form.

Then Assignments of new values to a subset of the
variables (called actions). Assignments can be
deterministic or non-deterministic.



Recap Mathematical foundation Event-B modelling Refinement References



Recap Mathematical foundation Event-B modelling Refinement References

Action

Formal description of a deterministic action:

Actions can also be non-deterministic. In this case the formal
description has the following form:

or alternatively (for a single variable):

Non-deterministic example: i , j :| i ′ > j ∧ j ′ > i ′ + k



Recap Mathematical foundation Event-B modelling Refinement References

Proof obligation

Proof obligations are conditions that must be proven to ensure
that the model is consistent and has certain properties.
A selection of important kinds of proof obligations:

1 Well-definedness conditions
2 Invariant establishment/preservation (initial model)
3 Feasibility (initial model)
4 Guard strengthening (refinement)
5 Invariant preservation (refinement)
6 Simulation (refinement)
7 ... (consult the following slide for the proof obligations

generated by Rodin)



Recap Mathematical foundation Event-B modelling Refinement References



Recap Mathematical foundation Event-B modelling Refinement References

Invariant establishment and preservation
Invariants are an essential concept of machines. One proves that
an invariant holds in every state of the discrete transition system
by induction:
Establishment: Invariants hold after the initialisation event.
Preservation: Each state transition preserves the invariant.

Invariant establishment: init =̂ then v :| AP(s, c, v ′) end

s : seen sets
c : seen constants
v : machine variables

A(s, c) : seen axioms
AP(s, c, v ′) : initialisation after predicate

A(s, c),AP(s, c, v ′) ` I(s, c, v ′)



Recap Mathematical foundation Event-B modelling Refinement References

Invariant preservation:
e =̂ any x where G(x , s, c, v) then v :| BAP(x , s, c, v , v ′) end

s : seen sets
c : seen constants
v : machine variables
x : event parameters

A(s, c) : seen axioms
I(s, c, v) : invariants

G(x , s, c, v) : event guards
BAP(x , s, c, v , v ′) : event before-after predicate

A(s, c), I(s, c, v),G(x , s, c, v),BAP(x , s, c, v , v ′) ` I(s, c, v ′)



Recap Mathematical foundation Event-B modelling Refinement References

Feasibility
Feasibility ensures that an action is always feasible when the event
guards are true, i.e., there always exists a value satisfying the
before-after predicate (trivially true in the deterministic case).
e =̂ any x where G(x , s, c, v) then v :| BAP(x , s, c, v , v ′) end

s : seen sets
c : seen constants
v : machine variables
x : event parameters

A(s, c) : seen axioms
I(s, c, v) : invariants

G(x , s, c, v) : event guards
BAP(x , s, c, v , v ′) : event before-after predicate

A(s, c), I(s, c, v),G(x , s, c, v) ` ∃v ′ · BAP(x , s, c, v , v ′)



Recap Mathematical foundation Event-B modelling Refinement References

1 Recap

2 Mathematical foundation

3 Event-B modelling

4 Refinement

5 References



Recap Mathematical foundation Event-B modelling Refinement References

Refinement

A central part of Event-B is the concept of refinement. Refinement
is a mechanism for introducing details to the dynamic part of a
model.

Note: It is possible to introduce more details to the static part of
a model by context extensions.

Principle of substitutivity:
If a machine can be substituted by another in such a way that the
users can not tell a substitution has taken place, the latter is called
a refinement of the former.



Recap Mathematical foundation Event-B modelling Refinement References

In principle, one distinguishes between the following kinds of
machine refinement (Event-B, however, does not differentiate
between them):

1 Superposition refinement
2 Data refinement

Terminology: If a machine M refines a machine N, one calls N
the abstract machine and M the concrete machine, respectively.



Recap Mathematical foundation Event-B modelling Refinement References

Superposition refinement

In superposition refinement, the variables of the abstract machine
are kept. This refinement can introduce new variables and events.

Most importantly, the following conditions must be fulfilled in the
concrete events:

The concrete guards are stronger than the abstract ones.
Thus, when the concrete event is enabled, so must be the
corresponding abstract one (guards strengthening).
The concrete actions simulate the abstract actions, i.e.,
actions do not contradict (simulation).
Concrete invariants are preserved by each pair of concrete and
abstract event.



Recap Mathematical foundation Event-B modelling Refinement References

e =̂ any x where G(x , s, c, v)
then v :| BAPe(x , s, c, v , v ′) end

f =̂ refines e any x where H(x , s, c, v ,w)

then v ,w :| BAPf (x , s, c, v , v ′,w ,w ′) end



Recap Mathematical foundation Event-B modelling Refinement References

For the sake of brevity, the arguments are omitted in the following
slides when they are of the following form.

s : seen sets
c : seen constants
v : abstract machine variables
w : additional concrete machine variables
x : event parameters

A(s, c) : seen axioms
I(s, c, v) : abstract invariants

J(s, c, v ,w) : concrete invariants
G(x , s, c, v) : abstract event guards

H(x , s, c, v ,w) : concrete event guards
BAPe(x , s, c, v , v ′) : abstract event before-after predicate

BAPf (x , s, c, v , v ′,w ,w ′) : concrete event before-after predicate



Recap Mathematical foundation Event-B modelling Refinement References

Guard strengthening:

A, I, J ,H ` G

Simulation:

A, I, J ,H,BAPf ` BAPe

Invariant preservation:

A, I, J(s, c, v ,w),H,BAPf ` J(s, c, v ′,w ′)



Recap Mathematical foundation Event-B modelling Refinement References

Data refinement

Data refinement is the case when abstract variables are removed
and replaced by concrete variables. Here, the case when event
parameters are replaced is included.

Gluing invariants: Since parts of the abstract variables are no
longer available in a concrete machine, one has to establish a
mechanism that connects the state of both machines. This is done
by so called gluing invariants.

Witnesses: Similarly, when event parameters are replaced in a
concrete event, a state transition in the abstract machine with a
suitable parameter must be simulated. Such a suitable parameter
is called a witness. Note that witnesses must be feasible.



Recap Mathematical foundation Event-B modelling Refinement References

Example:



Recap Mathematical foundation Event-B modelling Refinement References



Recap Mathematical foundation Event-B modelling Refinement References

e =̂ any x where G(x , s, c, v)
then v :| BAPe(x , s, c, v , v ′) end

f =̂ refines e any y where H(y , s, c,w)

with x : Wx(x , y , s, c,w), v ′ : Wv ′(y , s, c, v ′,w)

then w :| BAPf (y , s, c,w ,w ′) end



Recap Mathematical foundation Event-B modelling Refinement References

For the sake of brevity, the arguments are omitted in the following
slides when they are of the following form.

s : seen sets
c : seen constants

v/w : abstract/concrete machine variables, resp.
x/y : abstract/concrete event parameters, resp.

A(s, c) : seen axioms
I(s, c, v) : abstract invariants

J(s, c, v ,w) : concrete invariants and gluing invariants
G(x , s, c, v) : abstract event guards
H(y , s, c,w) : concrete event guards

Wx(x , y , s, c,w) : witness for abstract parameters
Wv ′(y , s, c, v ′,w) : witness for abstract actions

BAPe(x , s, c, v , v ′) : abstract event before-after predicate
BAPf (y , s, c,w ,w ′) : concrete event before-after predicate



Recap Mathematical foundation Event-B modelling Refinement References

Guard strengthening:

A, I, J ,H,Wx ` G

Simulation:

A, I, J ,H,Wx ,Wv ′ ,BAPf ` BAPe

Invariant preservation:

A, I, J(s, c, v ,w),H,Wx ,Wv ′ ,BAPf ` J(s, c, v ′,w ′)



Recap Mathematical foundation Event-B modelling Refinement References

References I

[Abr07] JR Abrial, The event-b modelling notation, wiki.
event-b. org (2007).

[Abr10] Jean-Raymond Abrial, Modeling in event-b: system and
software engineering, Cambridge University Press, 2010.

[FHB+14] Andreas Fürst, Thai Son Hoang, David Basin, Krishnaji
Desai, Naoto Sato, and Kunihiko Miyazaki, Code
generation for event-b, International Conference on
Integrated Formal Methods, Springer, 2014,
pp. 323–338.

[Hoa13] Thai Son Hoang, An introduction to the event-b
modelling method, Industrial Deployment of System
Engineering Methods (2013), 211–236.



Recap Mathematical foundation Event-B modelling Refinement References

References II

[LSP07] Thierry Lecomte, Thierry Servat, and Guilhem
Pouzancre, Formal methods in safety-critical railway
systems.

[Rob10] Ken Robinson, A concise summary of the event b
mathematical toolkit.


	Recap
	Mathematical foundation
	Event-B modelling
	Refinement
	References

