Formalization and Validation of
Fundamental Sequence Algorithms by
Computer-assisted Checking of Finite
Models

Lucas Payr

2nd Bachelor Thesis Report
Supervisors: Wolfgang Schreiner & Wolfgang Windsteiger

27. Juni 2018



Goal of the Thesis

Goal:
Present formal specifications and verification conditions for
common searching and sorting algorithms.

Searching Algorithms:
Linear Search, Binary Search

Sorting Algorithms:
Insertion Sort, Quick-Sort, Merge-Sort, Heap-Sort

Data Types:

Arrays, Recursive lists and Pointer linked lists



Table of Content

In the Previous Report

e Explained basic concept of validating an algorithm with
respect to its specifications

e Gave short introduction into RISC Algorithm Language.

e Showed an example of an imperative and a recursive algorithm
and the corresponding validation method.

In this Report

e Short refreshment of the topic
e Validation of binary Search
e Validation of Merge Sort



RISC Algorithm Language

Algorithms are formalized and validated using the RISC Algorithm
Language.

e Used for formalization, and checking of the specifications.
(pre- and post-conditions, termination terms, loop invariants)

e Theorems and predicates (verification conditions) are
checkable against the model.



Validation Process

1. Refine pre- and post-condition if possible

e Pre-condition is not trivial.
e Post-condition ensures unique results.
2. Validate the specification
e Let RISCAL check all possible cases.
3. Formulate and validate the verification conditions.
e VC1: The invariant holds before the loop starts.
e VC2: The termination term never becomes negative.
e VC3: Every loop iteration preserves the invariant and
decreases the termination term.

e VC4: On termination of the loop, the invariant implies the
postcondition.



Binary Search Algorithm

Input: sorted array, element
Output: index if the element
was found, else —1

1. If the middle element is
equal to the searched

element, return the index.

2. Else repeat the previous
step for the elements
left/right of the middle
element.

proc binarySearch(a:array, x:nat):ret

requires pre(a,x);
ensures post (a,x,result);

var out:ret := -1;

var left:N[N-1+1] := 0;

var right:Z[-1,N-1] := N-1;

while out = -1 A left < right do
invariant inv(a,x,left,right,out);
decreases termin(left,right,out);

var i:index := left + (right-left)/2;
if alil = x then
out := ij;
else if a[i]l > x then
right := i-1;
else
left := i+1;
}

return out;



Binary Search Algorithm

Pre-condition:

Array is sorted.
Post-condition:

A index corresponding to the
searched element or -1.
Invariant:

Out = -1 if the element is not
found outside [left,right]

else out = index.
Termination term:

If out = -1 then right-left,
else 0.

//pre-Condition
pred pre(a:array,x:nat)
<> isSorted(a,0,N-1);

//post-Condition

pred post(a:array,x:nat,result:ret)

& (result = -1 & Vi:index.alil # x)
A (result > 0 = alresult] = x);

//invariant
pred inv(a:array,x:nat,left:N[N-1+1],right:Z[-1,N-1],
out:ret)
< -1 < right-left
A (out > 0 = alout] = x)
A (C
out = -1 V left < right
= Vi:index.
(0 < i Aic<left) V (right <i A i < N-1)
= alil # x
)3

//termination term
fun terminRec(left:N[N-1+1],right:Z[-1,N-1]):N[N]
= right-left+1;



Validation of the Binary Search Algorithm

Validation of the imperative variant of binary Search:

1. Formulate and refine pre- and post-condition.
Pre-condition
e Array is sorted.
— Supporting statement: isSorted(a:array,from:index,to:index)
e Check the pre-condition is not trivial.
Post-condition
e A index corresponding to the searched element or -1.
e Result is not uniquely defined.



Validation of the Binary Search Algorithm

2. Validate the specification
Invariant
e Main-condition: out = -1 if the element is not found outside
[left,right] else out = index.
e Additional conditions: to ensure that invariant implies
post-condition.

3. Formulate and validate the verification conditions.

= Live demonstration of the 3 steps.



Merge Sort Algorithm

Input: Arbitrary List
Output: Sorted List

1. Split the array into two
parts.

2. Recursively apply the
algorithm to the parts.

3. Merge the parts.

fun mergeSort(a:list):list
requires true;
ensures
listLength(a) = listLength(result)
A isSorted(result)
A isPermutationOf (toArray(a),toArray(result));
decreases listLength(a)+1;
= match a with
{
nil -> a;
cons(elem:nat,rem:1list) ->
match rem with
{
nil -> aj;
cons(elem2:nat,rem2:1list) ->
merge (
mergeSort (split(a).1),
mergeSort (split(a).2)

10



Merge Algorithm

Input: Two sorted Lists
Output: Combined sorted List

fun merge(a:list,b:1list):list
requires pre(a,b);
ensures post(a,b,result);

) decreases termin(a,b);
//pre-Condition = match a with

// (x) a and b are sorted {
// (x) The length of the combined list atb
is not bigger N

nil -> b;
cons(elem_a:nat,rem_a:list) ->

pred pre(a:list,b:list) <=>
isSorted(a)

match b with

{
A isSorted(b) nil -> a:
H
A listLength(a)+listLength(b) < N; (e e, sem e <
if elem_a > elem_b then
//post-Condition list!cons(elem_a,merge(rem_a,b))
// (%) result is a permutation of the list (a,b) else
// (%) result is sorted list!cons(elem_b,merge(a,rem_b));
pred post(a:list,b:list,result:list) <=> e

listLength(result) = listLength(a)+listLength(b)
A isPermutation0f (
toArray (result),
toArray (append(a,b))
)
A isSorted(result);

B8

11



Validation of the Merge Sort Algorithm

1. Formulate and refine pre- and post-condition.

e Pre-condition: trivial (true)
e Post-condition: list is sorted.
— Check if result is unique.

2. Validate the specification
Termination term

e The length of the list gets smaller each iteration.

12



Validation of the Merge Sort Algorithm

3. Formulate and validate the function specifications.
e All preconditions of the subfunctions hold.

i The pre-condition holds for the split parts.
ii Iterate over all possible resulting parts that fulfill the
post-condition.
iii The pre-condition of the merge algorithm holds for the two
resulting parts.

13



Validation of the Merge Sort Algorithm

e The post-condition holds given that all sub-functions
can be defined by their post-conditions.

i lterate over all possible resulting parts that fulfill the
post-condition for the split parts.

ii Iterate over all possible results that fulfill the
post-condition of the merge algorithm for the two
resulting parts.

iii The post-condition holds for the result.

e The termination term is always positive or zero
and each recursion reduces the termination term.

= Live demonstration of the 3 steps

14



Stable Check of the Merge Sort Algorithm

1. Check if the resulting array of the algorithm is stable.
2. Include the stable-condition in the post-conditions.

3. Formulate and validate the verification conditions.

— The merge sort is stable

15



Started in March 2018

e Finished linear Search, binary search.

e Finished insertion sort.

e Finished merge algorithm, merge sort.

e Finished partitioning algorithm for arrays and recursive lists.
e Finished quick sort algorithm for arrays and recursive lists.
e Working on partitioning and quick sort for linked lists.

e Next heapify and heap sort algorithm

Expected completion in October 2018

Thanks for your attention!

16



