
Formalization and Validation of
Fundamental Sequence Algorithms by
Computer-assisted Checking of Finite
Models

Lucas Payr

2nd Bachelor Thesis Report
Supervisors: Wolfgang Schreiner & Wolfgang Windsteiger

27. Juni 2018

1



Goal of the Thesis

Goal:
Present formal specifications and verification conditions for
common searching and sorting algorithms.

Searching Algorithms:
Linear Search, Binary Search

Sorting Algorithms:
Insertion Sort, Quick-Sort, Merge-Sort, Heap-Sort

Data Types:
Arrays, Recursive lists and Pointer linked lists

2



Table of Content

In the Previous Report

• Explained basic concept of validating an algorithm with
respect to its specifications

• Gave short introduction into RISC Algorithm Language.

• Showed an example of an imperative and a recursive algorithm
and the corresponding validation method.

In this Report

• Short refreshment of the topic

• Validation of binary Search

• Validation of Merge Sort

3



RISC Algorithm Language

Algorithms are formalized and validated using the RISC Algorithm
Language.

• Used for formalization, and checking of the specifications.
(pre- and post-conditions, termination terms, loop invariants)

• Theorems and predicates (verification conditions) are
checkable against the model.

4



Validation Process

1. Refine pre- and post-condition if possible
• Pre-condition is not trivial.
• Post-condition ensures unique results.

2. Validate the specification
• Let RISCAL check all possible cases.

3. Formulate and validate the verification conditions.
• VC1: The invariant holds before the loop starts.
• VC2: The termination term never becomes negative.
• VC3: Every loop iteration preserves the invariant and

decreases the termination term.
• VC4: On termination of the loop, the invariant implies the

postcondition.

5



Binary Search Algorithm

Input: sorted array, element
Output: index if the element
was found, else −1

1. If the middle element is
equal to the searched
element, return the index.

2. Else repeat the previous
step for the elements
left/right of the middle
element.

proc binarySearch(a:array, x:nat):ret
requires pre(a,x);
ensures post(a,x,result);

{
var out:ret := -1;
var left:N[N-1+1] := 0;
var right:Z[-1,N-1] := N-1;
while out = -1 ∧ left ≤ right do

invariant inv(a,x,left,right,out);
decreases termin(left,right,out);

{
var i:index := left + (right-left)/2;
if a[i] = x then

out := i;
else if a[i] > x then

right := i-1;
else

left := i+1;
}
return out;

}

6



Binary Search Algorithm

Pre-condition:
Array is sorted.
Post-condition:
A index corresponding to the
searched element or -1.
Invariant:
Out = -1 if the element is not
found outside [left,right]
else out = index.
Termination term:
If out = -1 then right-left,
else 0.

//pre-Condition
pred pre(a:array,x:nat)
⇔ isSorted(a,0,N-1);

//post-Condition
pred post(a:array,x:nat,result:ret)
⇔ (result = -1 ⇔ ∀i:index.a[i] 6= x)
∧ (result ≥ 0 ⇒ a[result] = x);

//invariant
pred inv(a:array,x:nat,left:N[N-1+1],right:Z[-1,N-1],

out:ret)
⇔ -1 ≤ right-left
∧ (out ≥ 0 ⇒ a[out] = x)
∧ (

out = -1 ∨ left ≤ right
⇒ ∀i:index.

(0 ≤ i ∧ i < left) ∨ (right < i ∧ i ≤ N-1)
⇒ a[i] 6= x

);

//termination term
fun terminRec(left:N[N-1+1],right:Z[-1,N-1]):N[N]
= right-left+1;

7



Validation of the Binary Search Algorithm

Validation of the imperative variant of binary Search:

1. Formulate and refine pre- and post-condition.
Pre-condition
• Array is sorted.
→ Supporting statement: isSorted(a:array,from:index,to:index)

• Check the pre-condition is not trivial.

Post-condition
• A index corresponding to the searched element or -1.
• Result is not uniquely defined.

8



Validation of the Binary Search Algorithm

2. Validate the specification
Invariant
• Main-condition: out = -1 if the element is not found outside

[left,right] else out = index.
• Additional conditions: to ensure that invariant implies

post-condition.

3. Formulate and validate the verification conditions.

⇒ Live demonstration of the 3 steps.

9



Merge Sort Algorithm

Input: Arbitrary List
Output: Sorted List

1. Split the array into two
parts.

2. Recursively apply the
algorithm to the parts.

3. Merge the parts.

fun mergeSort(a:list):list
requires true;
ensures

listLength(a) = listLength(result)
∧ isSorted(result)
∧ isPermutationOf(toArray(a),toArray(result));

decreases listLength(a)+1;
= match a with

{
nil -> a;
cons(elem:nat,rem:list) ->

match rem with
{

nil -> a;
cons(elem2:nat,rem2:list) ->

merge(
mergeSort(split(a).1),

mergeSort(split(a).2)
);

};
};

10



Merge Algorithm

Input: Two sorted Lists
Output: Combined sorted List

//pre-Condition
// (*) a and b are sorted
// (*) The length of the combined list a+b

is not bigger N
pred pre(a:list,b:list) <=>

isSorted(a)
∧ isSorted(b)
∧ listLength(a)+listLength(b) ≤ N;

//post-Condition
// (*) result is a permutation of the list (a,b)
// (*) result is sorted
pred post(a:list,b:list,result:list) <=>

listLength(result) = listLength(a)+listLength(b)
∧ isPermutationOf(

toArray(result),
toArray(append(a,b))

)
∧ isSorted(result);

fun merge(a:list,b:list):list
requires pre(a,b);
ensures post(a,b,result);
decreases termin(a,b);
= match a with
{

nil -> b;
cons(elem_a:nat,rem_a:list) ->

match b with
{

nil -> a;
cons(elem_b:nat,rem_b:list) ->

if elem_a > elem_b then
list!cons(elem_a,merge(rem_a,b))

else
list!cons(elem_b,merge(a,rem_b));

};
};

11



Validation of the Merge Sort Algorithm

1. Formulate and refine pre- and post-condition.
• Pre-condition: trivial (true)
• Post-condition: list is sorted.
→ Check if result is unique.

2. Validate the specification
Termination term
• The length of the list gets smaller each iteration.

12



Validation of the Merge Sort Algorithm

3. Formulate and validate the function specifications.

• All preconditions of the subfunctions hold.

i The pre-condition holds for the split parts.
ii Iterate over all possible resulting parts that fulfill the

post-condition.
iii The pre-condition of the merge algorithm holds for the two

resulting parts.

13



Validation of the Merge Sort Algorithm

• The post-condition holds given that all sub-functions
can be defined by their post-conditions.

i Iterate over all possible resulting parts that fulfill the
post-condition for the split parts.

ii Iterate over all possible results that fulfill the
post-condition of the merge algorithm for the two
resulting parts.

iii The post-condition holds for the result.

• The termination term is always positive or zero
and each recursion reduces the termination term.

⇒ Live demonstration of the 3 steps

14



Stable Check of the Merge Sort Algorithm

1. Check if the resulting array of the algorithm is stable.

2. Include the stable-condition in the post-conditions.

3. Formulate and validate the verification conditions.

→ The merge sort is stable

15



Current Work

Started in March 2018

• Finished linear Search, binary search.

• Finished insertion sort.

• Finished merge algorithm, merge sort.

• Finished partitioning algorithm for arrays and recursive lists.

• Finished quick sort algorithm for arrays and recursive lists.

• Working on partitioning and quick sort for linked lists.

• Next heapify and heap sort algorithm

Expected completion in October 2018

Thanks for your attention!

16


