Event-B and Rodin

Seminar Formal Methods Il

Johann Gschnaller

April 25, 2018

Overview

@ Introduction

© Modelling in Event-B/Rodin

© Verification

@ References

Introduction
©000000000

@ Introduction

Introduction
0@00000000

Motivation

“Faultless systems — yes we can!”
Prologue in “Modeling in Event-B” by Jean-Raymond Abrial [Abrl0]

Introduction
00®0000000

In a nutshell: Based on the idea of refinement, gradually construct
formal models and enable a systematic reasoning by means of
proofs.

A few key points:

@ Modelling (not programming) a problem by analysing
requirements.

@ Show that the model has certain properties (invariants) by
performing mathematical proofs.

@ Gradually refine models: Start with an abstract model and
add complexity step-by-step or transform the model such that
it can be implemented more easily.

Introduction
[ee]eY Tolelelelele)

Such models can be used to eventually construct:
@ Sequential programs
@ Concurrent programs
@ Distributed programs
@ Electronic circuits
° ...

Detailed examples for each of these points can be found in the
book of Abrial [Abr10].

Introduction
0000®00000

Event-B

Event-B is a formal method for system modelling and analysis.
@ Evolution of the B-method

@ A notation used for developing mathematical models of
discrete transition systems, i.e. a state based modelling
approach where the transitions are described by events

@ Basic language is predicate logic
@ Problem modelling using set theory

@ Use of refinement to represent the system at different
abstraction levels

@ Mathematical proofs to verify consistency between refinement
levels and to guarantee system invariants

A great summary of the mathematical toolkit supported by
Event-B may be found in Robinson [Rob10].

Introduction
00000@0000

Rodin (Rigorous Open Development Environment for Complex Systems)

An development environment for creating Event-B models.
Extension of the Eclipse IDE
Type-checker and well-formedness

Generates proof obligations (more on this later)

Proof manager: (semi)automatic discharge of the proof
obligations

@ Allows refinement of the created models
Rodin is open source and can be downloaded at:
https://sourceforge.net/projects/rodin-b-sharp/files/Core_Rodin_
Platform/.

https://sourceforge.net/projects/rodin-b-sharp/files/Core_Rodin_Platform/
https://sourceforge.net/projects/rodin-b-sharp/files/Core_Rodin_Platform/

Introduction
000000e000

Rodin plug-ins

Rodin is a modular software with many extensions. Some useful
plug-ins:

Atelier B Provers
For conducting mathematical proofs

ProB
For interactive animation of Event-B models and model checking

Introduction
0000000800

Industrial applications

Event-B (and the B-method) have been used in several
safety-critical systems. Some examples are shown on the following
slides. For more applications consult the website:
http://wiki.event-b.org/index.php/Industrial_Projects.

http://wiki.event-b.org/index.php/Industrial_Projects

Introduction
0000000080

Paris, Metro line 14

First real success (using the B-method) [LSPO7]:

@ A fully automatic driverless Metro 14 line was launched in
Paris, October 1998.

@ Over 110.000 lines of B models were written, generating
86.000 lines of Ada.

@ After the development, no bugs were ever detected at the
different testing, validation and operational phases.

@ The safety-critical software is still in version 1.0 in 2007.

Introduction
000000000e

Other projects using Event-B

Siemens Transportation
Train control and signalling systems

Bosch
Development of a cruise control system and a start-stop system

SAP
Analysis of business choreography models

9000000000

© Modelling in Event-B/Rodin

Modelling in Event-B/Rodin

O®00000000

Event-B components

An Event-B model consists of several components. A component

can be either:

@ Context: Contains the static structure of the discrete system

@ Machine: Describes the dynamic part of the discrete system

sees
Machine [———m=] Context
refines extends
sees
Machine |——=| Context

refines *

* extends

Modelling in Event-B/Rodin
[ele] Yelolelolelole)

Context

Contexts are grouped into the following sections:

Sets User-defined data types. The identifier of a set
implicitly creates a new constant.
Constants Declared constants. The type must be declared in
the axiom section.

Axioms A list of predicates (called axioms). Axioms are
statements that are assumed to be true in the model.
They can be used as hypotheses in the proofs.

Other relevant modifiers:
Theorems Axioms may be marked as theorems. Once proven,

they can be used like regular axioms.

Extends A context can extend other contexts to inherit their
sets/constants/axioms.

Modelling in Event-B/Rodin

000@000000

Example context:

CONTEXT
Array
SETS
oV values stored in the array
CONSTANTS
o f f(i) gives the value of the array 'V' at index 'i'
° n maximum array index
ot target value
AXIOMS

o type of n: n € N not theorem

o type of f: f € 1l.n — V not theorem

o target_in_array: t € ran(f) not theorem
o min_size array: n € N1 theorem

END

Modelling in Event-B/Rodin
[elelele] Yelolelole)

Machine

Machines are grouped into the following sections:

Variables Variables that change their values over time (state of
the machine). Initialised in a special event.

Invariants Predicates that must be true in every reachable state.

Variants Used to guarantee termination. Termination means
that a chosen set of events are enabled only a finite
number of times.

Events Assigns new values to a subset of the variables. Only
active when its guard is true.

Other relevant modifiers:
Theorems Can be applied to certain predicates.

Refines A machine can be an refinement of another machine
(a more concrete version).

Sees The contexts that this machine has access to.

Modelling in Event-B/Rodin

[eJelelele] lelelele}

Example machine:

MACHINE
Search
REFINES
° SearchAbstr
SEES
° Array
VARIABLES
°o t_ind target index
o current search index
INVARIANTS
o type j: j € N not theorem
o searched indices: t & f[1.j] not theorem
VARIANT
o n-j
EVENTS
o INITIALISATION: extended ordinary
THEN
° init j: j =0
END
o SEARCH: not extended ordinary
REFINES
° SEARCH
WHERE
° curr_index is target: f(j + 1) = t not theorem
WITH
© g +1=1
THEN
° find_target index: tind =j + 1
END
o PROGRESS: not extended convergent
WHERE
o curr_index_not_target: f(j + 1) # t not theorem
THEN
o increment j: j=i+1
END

END

Modelling in Event-B/Rodin
[elelelelole] Yololo)

Events consist of the following concepts:
Parameters A number of parameters for this event.

Guards A number of predicates that specify when the event
is enabled.

Witnesses Used in refinements of an abstract machine.

Actions Assignment of new values to a subset of the
variables. Assignments can be deterministic or
non-deterministic.

Other relevant modifiers:
Status One of the values: ordinary, convergent, anticipated.

Refines Designates the event(s) of the abstract machine that
this event refines (special SKIP event for genuinely
new events).

0000000 e00

Example events:

o SEARCH: not extended ordinary
REFINES
° SEARCH
WHERE
° curr_index is target: f(j + 1) = t not theorem
WITH
o i j+1=1
THEN
o find_target index: tind =3 + 1
END

o PROGRESS: not extended convergent

WHERE

o curr _index not target: f(j + 1) # t not theorem
THEN

°o increment j: j=3+1

END

Modelling in Event-B/Rodin
00000000e0

Refinement

A central aspect in Event-B/Rodin. Used to gradually introduce
details and add complexity. Refinement is relevant only for
machines (contexts can be extended only). Two important aspects
of machine refinement:

@ Ensure that the state of the refined machine is somehow
connected to the abstract machine.

@ Each event of the abstract machine is refined by one in the
more concrete machine.

Refinement variants:

Horizontal refinement Adds complexity to the model
(superposition refinement)

Vertical refinement Introduce details to the data structures
(data refinement)

Modelling in Event-B/Rodin

000000000 e

Important concepts with respect to the mentioned refinement
aspects (examples in live demo):

Gluing invariant Invariant that connects variables (state) in the
concrete machine to variables in the abstract
machine.

Witnesses When an abstract event has a parameter that is no
longer used in the concrete event, a witness for the
abstract parameter is needed. Note: In Rodin,
witnesses have special labels.

Verification
©0000

© Verification

Verification
0®000

Verification outline (details in second part of the seminar)

To guarantee the correctness of the model (e.g. invariants are
never violated), certain conditions must be mathematically proven.

In Event-B, the goals that need to be proven to verify this are
called proof obligations.

Verification
00®00

Proof obligations

For contexts:
Necessary for theorems and to ensure well-formedness

For machines:
More involved, basically it must be guaranteed that

@ the machine must be consistent, i.e., it should never reach a
state which violates invariants

@ behaviour of refined machines corresponds to that of the
abstract machine.

Verification
[eleTe] Yo)

Rodin comes with a proof manager that generates the necessary
proof obligations automatically.

Many proof obligations are discharged automatically by Rodin. In
other cases, human intervention is necessary. For the latter case,
Rodin supplies a Proving Perspective (details in live demo).

Verification
000

List of generated proof obligations:

generated in contexts
well-definedness of an axiom label/WD

axiom as theorem label/THM

generated for machine consistency

well-definedness of an invariant label/WD

invariant as theorem label/THM
well-definedness of a guard event/guardlabel/WD
guard as theorem event/guardlabel/THM
well-definedness of an action event/actionlabel/WD
feasibility of a non-det. action event/actionlabel/FIS
invariant preservation event/invariantlabel/INV

generated for refinements

guard strengthening event/abstract_grd_label/GRD
action simulation event/abstract_act_label/SIM
equality of a preserved variable event/variable/EQL

guard strengthening (merge) event/MRG

well definedness of a witness event/identifier/WWD
feasibility of a witness event/identifier/WFIS
generated for termination proofs

well definedness of a variant VWD

finiteness for a set variant FIN

natural number for a numeric variant event/NAT

decreasing of variant event/VAR

References
°

References |

[Abr10] Jean-Raymond Abrial, Modeling in event-b: system and
software engineering, Cambridge University Press, 2010.

[LSPO7] Thierry Lecomte, Thierry Servat, and Guilhem Pouzancre,
Formal methods in safety-critical railway systems.

[Rob10] Ken Robinson, A concise summary of the event b
mathematical toolkit.

	Introduction
	Modelling in Event-B/Rodin
	Verification
	References

