
Separation Logic - Bi-Abduction
Seminar Formal Methods

Franz-Xaver Reichl
February 1, 2018

1

Overview

• Separation Logic
• Bi-Abduction

2

Separation Logic

• The semantic of assertions
• Proof rules for programs
• Symbolic Executions

3

Separation Logic

The semantic of assertions - Prerequisites

Store - Heap

• Store: Vars ⇀ Vals
• Heap: Locations ⇀ Vals

Locations countably infinite and Locations ⊆ Vals

Valuation functions

• [[E]]s ∈ Vals Valuation function of an expression
in store s

• [[B]]s ∈ {true, false} Valuation function of a boolean
expression in store e

4

Separation Logic

The semantic of assertions - Notations

• s denotes a store h, h1, h2 denote heaps
• Let f be some partial function then dom(f) denotes the set of
all values for which f is defined.

• if dom(h1) ∩ dom(h2) = ∅ we say h1#h2

• Let f be some function then f [i 7→ j] denotes a function which
is everywhere equal to f except in i, which is mapped to j.

5

Separation Logic

The semantic of assertions - Satisfaction judgement

s, h |= P The assertion P holds for store s and heap h.

• s, h |= B iff [[B]]s = true
• s, h |= E 7→ F iff {[[E]]s} = dom(h) and h([[E]]s) = [[F]]s
• s, h |= false never
• s, h |= P ⇒ Q iff s, h |= P then s, h |= Q
• s, h |= ∀x .P iff ∀v ∈ Vals s[x 7→ v], h |= P
• s, h |= emp iff h is the empty heap
• s, h |= P ∗ Q iff ∃h1, h2 h1#h2, h1 ∪ h2 = h,

s, h1 |= P and s, h2 |= Q
• s, h |= P −∗ Q iff ∀h1 if h1#h and s, h1 |= P

then s, h ∪ h1 |= Q

6

Separation Logic

The semantic of assertions - Satisfaction judgement

s, h |= P The assertion P holds for store s and heap h.

• s, h |= B iff [[B]]s = true
• s, h |= E 7→ F iff {[[E]]s} = dom(h) and h([[E]]s) = [[F]]s
• s, h |= false never
• s, h |= P ⇒ Q iff s, h |= P then s, h |= Q
• s, h |= ∀x .P iff ∀v ∈ Vals s[x 7→ v], h |= P
• s, h |= emp iff h is the empty heap
• s, h |= P ∗ Q iff ∃h1, h2 h1#h2, h1 ∪ h2 = h,

s, h1 |= P and s, h2 |= Q
• s, h |= P −∗ Q iff ∀h1 if h1#h and s, h1 |= P

then s, h ∪ h1 |= Q

6

Separation Logic

The semantic of assertions - Examples

• With these judgements we can determine rules for the
remaining classical logical connectives.

• negation: Since ¬P ≡ P ⇒ false we get s, h |= ¬P iff s, h 6|= P
• conjunction: Since P ∧ Q ≡ ¬(P ⇒ ¬Q) we get

s, h |= P ∧ Q iff s, h |= P and s, h |= Q

• We can define a connective ↪→ s.t.
s, h |= E ↪→ F iff s, h |= (E 7→ F) ∗ true
This then means that there is some memory address such that
h([[E]]s) = [[F]]s but that the heap function can also be
defined for other addresses.

7

Separation Logic

Proof rules for programs - Prerequisites

Hoare calculus

• A Hoare triple {P} c {Q} means that if a command c is
executed in a state in which the condition P holds than after
the execution Q holds.
Example: {Q[e/x]}x := e{Q} where Q[e/x] means that x is
replaced by e

• There are rules for several constructs of programming
languages. e.g.

• The rule for assignment which I stated above
• The rule for command sequences:

{P} c1 {R} {R} c2 {Q}
{P} c1; c2 {Q}

• Besides this there are rules for conditionals, loops,. . .
8

Separation Logic

Proof rules for programs - Axiom for new Rule System

We now add to the rules for loops and conditionals from Hoare
calculus the following rules.

• {E 7→ −} [E] := F {E 7→ F}
• {E 7→ −} free(E) {emp}
• {(x = m) ∧ emp} x := cons(E1, . . . , Ek)
{x 7→ E1[m/x], . . . , Ek [m/x]}

• {(x = n) ∧ emp} x := E {x = (E [n/x]) ∧ emp}
• {E 7→ n ∧ x = m} x := [E] {x = n ∧ E [m/x] 7→ n}

Where [E] denotes the heap at position [[E]]s
Where E 7→ − means that the heap is defined for [[E]]s

9

Separation Logic

Proof rules for programs - New Rules

• Frame Rule
{P} C {Q}

{P ∗ R} C {Q ∗ R}
Where no variable which is free in R is modified by c.

• Additionally rules for auxiliary variable elimination, variable
substitution and the rule of consequence (i.e. weakening /
strengthening) are used.

10

Separation Logic

Symbolic Executions - Symbolic Heaps

• A pure formula Π is a formula in the form of (P1 ∧ . . . ∧ Pn)
I Where Pi describes properties of the store - heap independent.

• A quantifier free symbolic heap ∆ is a formula in the form of
Π ∧ (S1 ∗ . . . ∗ Sm)
I Where Si describes properties of the heap.

• A symbolic heap H is a formula in the form of ∃~X .∆
I Where ~X is a vector of logical variables (i.e. variables which

we do not use in programs)

Remark: Since there is no unique way for defining Pi and Si (for
example this depends on the chosen set for the values) this
informal description has to suffice.

11

Separation Logic

Symbolic Executions - Rules I

• Empty command
H ` H ′

{H} empty {H ′}
• Assignment

{∃X ′ : x = E [X ′/x] ∧ H[X ′/x]} C {H ′}
{H} x = E ; C {H ′}

Where X ′ is a fresh logical variable. This shall also hold for
the remaining rules.

• Heap lookup

{∃X ′ : x = F [X ′/x] ∧ H[X ′/x] ∗ E [X ′/x] 7→ F [X ′/x]} C {H ′}
{H ∗ E 7→ F} x = [E]; C {H ′}

12

Separation Logic

Symbolic Executions - Rules II

• Change in heap
{H ∗ E 7→ G} C {H ′}

{H ∗ E 7→ F} [E] = G ; C {H ′}
• New element on heap

{∃X ′ : H[X ′/x] ∗ x 7→ E [X ′/x]} C {H ′}
{H} x = cons(E); C {H ′}

• Delete heap element
{H} C {H ′}

{H ∗ E 7→ F} free(E); C {H ′}

13

Separation Logic

Symbolic Executions - Remarks

• Besides these rules there is also a rule for conditionals and for
rearranging such formulae.

• If we assume that we have a program with given Pre- and
Postcondition and with given loop invariants we can use
Symbolic Execution to verify the program with respect to the
Pre- and Postcondition.

14

Separation Logic

Symbolic Executions - Example

We want to show:
{x 7→ 1 ∧ y = 2} y := [x]; y := y + 1; free(x) {x = 3 ∧ emp}

y = 2 ∧ y ′ = 1 ∧ emp ` y = 2 ∧ emp
∃y ′ : y = y ′ + 1 ∧ y ′ = 1 ∧ emp ` y = 2 ∧ emp

{∃y ′ : y = y ′ + 1 ∧ y ′ = 1 ∧ emp} empty {y = 2 ∧ emp}
{∃y ′ : y = y ′ + 1 ∧ y ′ = 1 ∧ x 7→ 1} free(x) {y = 2 ∧ emp}
{y = 1 ∧ x 7→ 1} y := y + 1; free(x) {y = 2 ∧ emp}

{true ∧ x 7→ 1} y := [x]; y := y + 1; free(x) {y = 2 ∧ emp}

15

Bi-Abduction

Problem Description

Bi-Abduction is the problem of finding two symbolic heaps called
antiframe and frame such that:

A ∗ antiframe ` B ∗ frame

where A and B are given symbolic heaps.
Interpretation: Assume we have a procedure with precondition B
which is called in the state A. Then we can use Bi-Abduction to
infer what is missing in the calling state to fulfil the precondition
and we can infer the parts of the calling state which are not
needed in the preconditions.

16

Bi-Abduction

Solving Bi-Abduction

To solve the problem A ∗ antiframe ` B ∗ frame:

• Firstly we determine the antiframe as

antiframe = Abduce(A, B ∗ true)

• Secondly determine the frame as

frame = Frame(A ∗ antiframe, B)

Where Frame(X , Y) = L s.t. X ` Y ∗ L
Where Abduce(X , Y) = M s.t. X ∗M ` Y

17

Bi-Abduction

Abduction

Abduction is the problem of finding a symbolic heap Q such that:

A ∗ Q ` B

Abduce(A,B) describes an algorithm for solving this problem:
Abduce(A, B) =

1. Find a symbolic heap M s.t. A ∗ [M] B B
2. If A ∗M is inconsistent return fail, else M.

18

Bi-Abduction

Solving A ∗ [M] B B

Idea: recursively apply proof rules for abductive inference. We
denote the alogorithm for solving this problem with AbduceAux
AbduceAux(A, B) =

• If an axiom of our proof rules applies, return M indicated by
the axiom.

• Else if some rule applies, return AbduceAux(A’,B’) where A’
and B’ are given by the condition of the rule

• If no rule applies, return fail.

19

Bi-Abduction

Selected Proof rules for abductive inference

• Axiom base-true

∆ ∗ [∃~X .Π ∧ emp] B ∃~X .Π ∧ true
• missing

∆ ∗ [M] B ∆′ ∆ ∗ ∃~X .B(E , E ′) 6` false
∆ ∗ [M ∗ ∃~X .B(E , E ′)] B ∆′ ∗ ∃~X .B(E , E ′)

Where B(E , E ′) is E 7→ E ′ or ls(E , E ′)
• match

(E0 = E1 ∧∆) ∗ [M] B ∃~Y .∆′

∆ ∗ E 7→ E0 ∗ [∃~X .E0 = E1 ∧M] B ∃~X ~Y .∆′ ∗ E 7→ E1

Where ~Y ∩ FreeLogVar(E1) = ∅

20

Bi-Abduction

Proof rules for abductive inference - Example

base-true(y = X ∧ emp) ∗ [emp] B true missing
(y = X ∧ emp) ∗ [ls(X , 0)] B ls(X , 0) ∗ true

matchx 7→ y ∗ [y = X ∧ ls(X , 0)] B x 7→ X ∗ ls(X , 0) ∗ true

21

Bi-Abduction

We now use Bi-Abduction to extend our rules for symbolic
execution. If symbolic execution fails we use:

{A}C{B}
{P ∗M}C{B ∗ L}

Where M and L are a solution of the Bi-Abduction Problem.
P ∗M ` A ∗ L
In this case we have to add P to the preconditions of the start of
symbolic execution and can continue with symbolic execution.

22

References

I Josh Berdine, Cristiano Calcagno, and
Peter W. O’Hearn. “Symbolic Execution with
Separation Logic”. In: Programming Languages and
Systems. Ed. by Kwangkeun Yi. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2005, pp. 52–68. isbn:
978-3-540-32247-4.

I Cristiano Calcagno et al. “Compositional Shape
Analysis by Means of Bi-Abduction”. In: J. ACM 58.6
(2011), 26:1–26:66. doi: 10.1145/2049697.2049700.
url:
http://doi.acm.org/10.1145/2049697.2049700.

23

https://doi.org/10.1145/2049697.2049700
http://doi.acm.org/10.1145/2049697.2049700

I Peter W. O’Hearn. “A Primer on Separation Logic (and
Automatic Program Verification and Analysis).”. In:
Software Safety and Security. Ed. by Tobias Nipkow,
Orna Grumberg, and Benedikt Hauptmann. Vol. 33.
NATO Science for Peace and Security Series - D:
Information and Communication Security. IOS Press,
2012, pp. 286–318. isbn: 978-1-61499-028-4. url:
http://dblp.uni-trier.de/db/series/natosec/
natosec33.html#OHearn12.

I Wolfgang Schreiner. Lecture notes Formal Methods in
Software Development. 2016. url: https:
//moodle.risc.jku.at/course/view.php?id=131.

24

http://dblp.uni-trier.de/db/series/natosec/natosec33.html#OHearn12
http://dblp.uni-trier.de/db/series/natosec/natosec33.html#OHearn12
https://moodle.risc.jku.at/course/view.php?id=131
https://moodle.risc.jku.at/course/view.php?id=131

Thank you for your attention!

25

	References

