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Recapitulation of Markov Chain Theory

We can describe a discrete Markov chain (DTMC) as a Tuple D =
(S,s0,P,AP,L) where:

S is a set of states;

s0 is the initial state;

P is the transition probability matrix

AP is a set of atomic propositions

L is a labelling function
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Properties of Markov Chains

Important and often focussed properties are transient and steady-state
behaviours for DTMCs.

As an example we can compute the stationary distribution of an ergodic
(irreducible, non periodic) Markov chain by solving the linear System

π = πA

with the normalization property ∑
i∈E

πi = 1
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Probabilistic Computation Tree Logic

Probabilistic model checking tools like PRISM extend our knowledge to
properties over paths. This is done via the PCTL (Probabilistic
Computation Tree Logic) that extends the temporal logic CTL by
probabilistic concepts.

Definition

Φ :: = true | a | ¬Φ | Φ ∧ Φ | Φ ∨ Φ | P p[φ]
φ :: = X Φ | ΦU≤kΦ | Φ U Φ

where a is an atomic proposition, ∈ <,≤,≥,>, p ∈ [0,1] and k ∈ N
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Probabilistic Computation Tree Logic

With s|= Φ we denote that a property Φ is true/satisfied for state s.

The operator P p[φ] indicates if a path formula φ is true in a state
satisfying the given bound p. This can be formally described as

Definition

s |= P∼p[φ] ⇐⇒ Prob(s, φ) ∼ p
where Prob(s,φ) = Prs {ω ∈ Path(s) | ω |= φ}

Example

P>0.60[¬fail U success]
means ”is the probability that a task does not fail before it succeeds
>60?”.
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PCTL model checking

Definition

Sat(φ) = {s ∈ S | s |= Φ } = set of states satisfying Φ

For the non-probabilistic operators of our PCTL model we have

Sat(true) = S

Sat(a) = {s ∈ S | a ∈ L(s)}
Sat(¬ Φ) = S \ Sat(Φ)

Sat(Φ1 ∨ Φ2) = Sat(Φ1) ∪ Sat(Φ2)
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PCTL model checking

For P p[φ] (e.g. with next operator X)we need to compute probabilities for
all states s ∈ S.

Sat(P p[φ]) = {s ∈ S | Prob(s,XΦ) ∼ p}

Prob(s,XΦ) can be computed by

Prob(s,XΦ) =
∑

s′∈Sat(Φ)

P(s, s ′)

We can also compute the vector Prob(XΦ) which contains the
probabilities for all states s

Prob(XΦ)= P · Φ
with Φ a vector with entries ∈ {0,1} over S with Φ(s) = 1 ⇐⇒ s |= Φ
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Example for PCTL next

Example

Given is a property that returns true if the probability that we do not land
in try or success doing one step is ≥ 90:

P≥0.9[X (¬try ∨ success)]
for a Markov Chain with transition matrix

0 1 0 0
0 0.01 0.01 0.98
1 0 0 0
0 0 0 1
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Example for PCTL next

Example

In order to compute the vector Prob(XΦ) we first need to compute

Sat(¬try ∨ success) = (S \ Sat(try)) ∪ Sat(success)

= ({s0, s1, s2, s3} \ {s1}) ∪ {s3} = {s0, s2, s3}
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Example for PCTL next

Example

Now

Prob(X(¬try ∨ success)) = P · (¬ try ∨ succ) =
0 1 0 0
0 0.01 0.01 0.98
1 0 0 0
0 0 0 1

 ·


1
0
1
1

 =


0

0.99
1
1


which leads to

Prob(X (¬try ∨ success)) = [0, 0.99, 1, 1]

and
Sat(P≥0.9[X (¬try ∨ success)]) = {s1, s2, s3}
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PCTL for the bounded until operator

When we use the bounded until operator we need to do more work to
compute the probabilities:

Sat(P∼p[φ1U
≤kφ2]) = {s ∈ S | Prob(s, φ1U

≤kφ2) ∼ p}

First we identify the trivial states

Syes = Sat(φ2)
Sno = S \ (Sat(φ1) ∪ Sat(φ2))

For the expression Prob(s, φ1U
≤kφ2) we get

Prob(s, φ1U
≤kφ2) =


1 if s ∈ Syes

0 if s ∈ Sno

0 if s ∈ S?, k = 0∑
s′∈S

P(s, s ′) · Prob(s, φ1U
≤k−1φ2) if s ∈ S?, k > 0

where S? = S \ (Syes ∪ Sno )
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PCTL for the bounded until operator

The vector Prob(φ1 U≤k φ2) can be computed simultaneous via
computing the probabilities for all states s ∈ S, or by using an iterative
method:

Prob(φ1 U≤0 φ2) = φ2

Prob(φ1 U
≤k φ2) = P’ · Prob(φ1 U

≤k−1 φ2)

where

P’(s, s ′) =


P(s, s ′) if s ∈ S?

1 if s ∈ Syes

0 if s ∈ Sno
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PCTL for the until operator

Again we identify the trivial states

Syes = Sat(P≥1[φ1 U φ2])

Sno = Sat(P≤0[φ1 U φ2])

This two sets are computed with two extra algorithms giving the following
advantages:

gives exact results for the states in these sets

no further computations are needed for these states

reduces the number of states that need to be computed via a numeric
solver
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PCTL for the until operator

Algorithm0

Computation of Sno = Sat(P≤0[φ1 U φ2])

compute Sat(P>0[φ1 U φ2]).
This means we want to find states that reach a state satisfying φ2

through states satisfying φ1 with positive probability

this can be done by graph-based algorithms

the result is subtracted from S
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PCTL for the until operator

Algorithm1

Computation of Syes = Sat(P≥1[φ1 U φ2])

compute Sat(P<1[φ1 U φ2]), using Sno

This means we want to find states that reach a state in Sno through
states satisfying φ1 with positive probability

again, this can be done by graph-based algorithms

the result is subtracted from S
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PCTL for the until operator

From this we can compute the probabilities Prob(s, φ1Uφ2) as the solution
of a system of linear equations:

Prob(s, φ1Uφ2) =


1 if s ∈ Syes

0 if s ∈ Sno∑
s′∈S

P(s, s ′) · Prob(s, φ1Uφ2) if s ∈ S?

PRISM solves this by applying one of several available iterative method
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PCTL for the until operator

Example

Given is a property that returns true if we stay in state ”try” until we
reach state ”success” with probability bigger than 0.90

P>0.9[X (try U success)]
for the Markov Chain with transition matrix

0 1 0 0
0 0.01 0.01 0.98
1 0 0 0
0 0 0 1
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PCTL for the until operator

Example

Sat(try)={s1}, and Sat(success)={s3}
Sno = Sat(P≤0[try U success]) = {s0, s2}
Syes = Sat(P≥1[try U success]) = {s3}
S? = {s1}
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PCTL for the until operator

Example

This leads to the following linear system

- x0 = 0
- x1 = 0.01 · x1 + 0.01 · x2 + 0.98 · x3

- x2 = 0
- x3 = 1

This yields
- Prob(try U success) = [0,98/99,0,1]
- Sat(P>0.90[try U success]) = {s1, s3}
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Rewards for DTMCs

Definition

For a given DTMC (S,s0,P,L) we define a reward structure as a pair(ρ, ι)
where

ρ : S → R≥0 is the state reward function

ι : S x S → R≥0 is the transition reward function

Example

steps: ρ is 1 for all states; ι is 0 for all transitions

power consumption: ρ is the power consumption per time unit in each
state; ι is the power cost of each transition

Andreas Plank PRISM for Discrete Time Markov Chains January 30, 2018 26 / 38



PCTL for Rewards

We now extend the PCTL with the operator R, which works similar to the
operator P

Φ ::= ... | R∼p[I=k ] | R∼r [C≤k ] | R∼r [FΦ]

where

r ∈ R≥0,∼∈ {<,≤,≥, >}, k ∈ N and

R∼r [·] describes the mean value of · satisfying ∼ r

Andreas Plank PRISM for Discrete Time Markov Chains January 30, 2018 27 / 38



Types of Rewards

Instantaneous: R∼r [I
=k ]

- indicates if the expected state reward at step/time k is ∼ r
- example: expected occupied servers in the system after 30 steps
- computation: can be reduced to bounded until probabilities

Cumulative: R∼r [C
≤k ]

- indicates if the expected reward up to step/time k is ∼ r
- example: total power consumption up to next month
- computation: can be computed similar to bounded until probabilities

Reachability: R∼r [FΦ]

- indicates if the expected cumulated reward until a state satisfies Φ is ∼ r
- example: total power consumption until the system fails - computation:
can be computed similar to until probabilities.
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Numerical Solution

In PRISM the the systems of linear equations can be created by several
different engines.
The available engines in PRISM are

MTBDD

sparse

hybrid

explicit

The first three engines use a (at least to some extend) symbolic
representation of the data structure (BDDs, MTBDDs,...), and the fourth
engines uses explicit data structures.

Changing the engine will not alter the results however depending on the
problem the engines can vary in memory usage and time.
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Numerical Solution

The hybrid engine

The hybrid engine is the default engine used in PRISM. It combines
symbolic and explicit state data structures. Although it needs slightly
more time than other engines, in general it provides the best compromise
between time and memory usage.

The sparse engine

Good method for smaller models that require more time for model
checking. This engine is faster than the hybrid engine however it requires
significantly more memory.
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Numerical Solution

The MTBDD engine

The MTBDD is mostly used for very large well structured models with few
distinct probabilities/rates. Therefore this engine is mostly applied to
MDP model and much less to CTMC.

The explicit engine

Similar to the sparse engine the explicit engine is mostly used for small
models. However the engine uses only explicit data structure which can
give advantages in some special cases. (e.g. large state space where only
few states are reachable)
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Numerical Solution

Setting the engine in PRISM
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Iterative Solvers

PRISM provides several different methods for solving the linear equations.

Power method

Jacobi-Iteration

Gauss-Seidel

backwards Gauss-Seidel method

Jacobi over relaxation (JOR)

Successive Over-Relaxation (SOR)

Backwards SOR

However, not every method is available for every engine. (e.g. for the
MTBDD engine the Gauss-Seidel and SOR methods are not available)
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Iterative Solvers

Setting the solver in PRISM
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Convergence of the methods

PRISM checks the convergence of the methods by comparing the
maximum difference of successive solutions to a given threshold.
The value of this threshold can be altered by the user however the default
value is 10−6.

It is also possible to set an upper limit for the number of iterations
performed by a method(default value = 10,000). If a computation reaches
this upper limit an error message will be triggered.
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Thank you for your attention
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