PRISM and CTMC

Mario Binder WS 2017/2018

Outline

- Revision
- Matrices
- Paths
- Uniformisation
- Model Checking - Putting it all together
- Summary

CTMC

- Continuous-time Markov Chains
- Rates instead of probabilities
- Transition is chosen by race condition
- Example from last time:

Outline

- Revision
- Matrices
- Paths
- Uniformisation
- Model Checking - Putting it all together
- Summary

CTMC as Matrix

- We can create a transition matrix \mathbf{R} of a CTMC
- The entries are $\mathbf{0}$ if there is no connection between states and the transition rates otherwise

Probability Matrix from a CTMC

- We can also create a matrix of probabilities(similar to DTMC) from a CTMC
- A little bit of terminology(and revision):
- The Exit Rate of a state is defined as $E(s)=\sum_{s^{\prime} \in S} R\left(s, s^{\prime}\right)$
i.e. the sum of all outgoing transition rates
- A state s is called absorbing if $E(s)=0$
- The probability of a transition from s to s ' is then:
- 1 if $s=s^{\prime}$ and s is absorbing
- $\frac{\mathbf{R}\left(\mathbf{s}, \mathbf{s}^{\prime}\right)}{\mathbf{E (s)}}$ if s is not absorbing
- O otherwise

Probability Matrix from a CTMC

- We can now build a probability matrix \mathbf{P}
\{ Accept, Pending \}

\longrightarrow| \mathbf{P} | S_{0} | $\mathrm{~S}_{1}$ | $\mathrm{~S}_{2}$ | $\mathrm{~S}_{3}$ |
| :--- | :--- | :--- | :--- | :--- |
| S_{0} $6 / 11$ $2 / 11$
 $\mathrm{~S}_{1}$ 0 $10 / 11$ 0
 $\mathrm{~S}_{2}$ 0 0 $1 / 11$
 $\mathrm{~S}_{3}$ 0 0 0 | | | | |

- Note that if we wouldn't have extra rules for absorbing states, we would have $\frac{0}{0}$ for elements in the last row
- Therefore $\mathrm{P}\left(\mathrm{S}_{3}, \mathrm{~S}_{3}\right)=1$

Infinitesimal Generator Matrix

- The infinitesimal generator matrix \mathbf{Q} is essentially the same as the transition rate matrix \mathbf{R}, except that the elements of the main diagonal are now $-\left(\left(\sum_{s^{\prime} \in S} R\left(s, s^{\prime}\right)\right)-R(s, s)\right)$ i.e.
the negative matrix row sum without the diagonal element

\rightarrow| \mathbf{Q} | S_{0} | $\mathrm{~S}_{1}$ | $\mathrm{~S}_{2}$ | $\mathrm{~S}_{3}$ |
| :--- | :--- | :--- | :--- | :--- |
| $\mathrm{~S}_{0}$ | -50 | 20 | 30 | 0 |
| $\mathrm{~S}_{1}$ | 0 | -10 | 0 | 10 |
| $\mathrm{~S}_{2}$ | 0 | 0 | -50 | 50 |
| $\mathrm{~S}_{3}$ | 0 | 0 | 0 | 0 |

- We will need this matrix later when talking about uniformisation

Outline

- Revision
- Matrices
- Paths
- Uniformisation
- Model Checking - Putting it all together
- Summary

Paths

- An infinite path ω is a sequence $s_{0} t_{0} s_{1} t_{1} \ldots$
- The t-values specify the amount of time spent in a state
- Notation:
- $\omega(i)$ is the i-th state of the path
- time (ω, i) is the same as t_{i}
- $\omega @ t$ is the state in the path at time t
- A finite path ω is a sequence $s_{0} t_{0} s_{1} t_{1} \ldots s_{k-1} t_{k-1} s_{k}$, where s_{k} is an absorbing state
- time (ω, i) is the same as with infinite paths as long as $\mathrm{i} \leq \mathrm{k}$; otherwise $\operatorname{time}(\omega, \mathrm{i})=\infty$

Example

- Finite path $\omega=\mathrm{S}_{0}-0.5 \mathrm{~S}_{2}-0.8 \mathrm{~S}_{3}$
- $\omega(1)=S_{2}$
- time $(\omega, 0)=0.5$
- time $(\omega, 2)=\infty$
- $\omega @ 1=S_{2}$
- $\omega @ 0.3=\mathrm{S}_{0}$
- $\omega @ 1000=S_{3}$

Set of Paths

- The next thing we want to do, is to span a probability space starting from a start state s_{0}
- This means we are searching for a function μ, that takes a start state \mathbf{s}_{0}, a CTMC C and some set of paths \mathbf{S} starting from S_{0} and returns the following:
- 0 if $S=\varnothing$ (the empty set)
- 1 if $S=$ All possible paths in all possible intervals from s_{0}
- The cardinality of \mathbf{S} divided by the cardinality of all possible paths from s_{0}, otherwise

Important Observations

- The set of all possible paths starting from s_{0} is uncountable if $E\left(s_{0}\right)>0$, because time $t \in \mathbb{R}_{\geq 0}$
- If we have found a function μ and we give it a path ω, $\mu(\omega)=0$ for all valid paths
- For this reason, we do not only have to pass a path in the sense of a DTMC to $\boldsymbol{\mu}$ but also time intervals I

Notations

- The cylinder set $\mathbf{C}\left(\omega_{\text {fin }}\right)$ is as in DTMC the set of all paths starting with $\omega_{\text {fin }}$. However, $\omega_{\text {fin }}$ is now a sequence $\mathrm{S}_{0} \mathrm{I}_{0} \mathrm{~S}_{1} \mathrm{I}_{1} \ldots \mathrm{~S}_{\mathrm{k}-1} \mathrm{I}_{\mathrm{k}-1} \mathrm{~S}_{\mathrm{k}^{\prime}}$, where I_{i} is a non-empty interval in \mathbb{R}
- Using cylinder sets, we can recursively define our function μ, which we will now call Pr:
- $\operatorname{Pr}_{\mathrm{s}}(\mathrm{C}(\mathrm{s}))=1$
- $\operatorname{Pr}_{\mathrm{s}}\left(\mathrm{C}\left(\mathrm{s}, \mathrm{I}, \ldots, \mathrm{I}_{\mathrm{k}-2}, \mathrm{~S}_{\mathrm{k}-1}, \mathrm{I}_{\mathrm{k}-1}, \mathrm{~S}_{\mathrm{k}}\right)\right)=$

$$
\begin{aligned}
& \operatorname{Pr}_{s}\left(C\left(s, I, \ldots, I_{k-2}, S_{k-1}\right)\right) * P\left(S_{k-1}, S_{k}\right) * \\
& e^{-E\left(s_{k-1}\right) * \text { inf }_{k-1}}-e^{-E\left(s_{k-1}\right) * \text { supi } I_{k-1}}
\end{aligned}
$$

EMaM0

- $\operatorname{Pr}_{50}\left(C\left(S_{0},[0,2], S_{1},[0,4], S_{3}\right)\right.$

$$
\rightarrow \operatorname{Pr}_{50}\left(\mathrm{C}\left(\mathrm{~S}_{0},[0,2], \mathrm{S}_{1}\right) *\right.
$$

$$
\mathrm{P}\left(\mathrm{~S}_{1}, \mathrm{~S}_{3}\right) *\left(1-\mathrm{e}^{-440}\right)
$$

$$
\rightarrow \operatorname{Pr}_{50}\left(\mathrm{C}\left(\mathrm{~S}_{0},[0,2], \mathrm{S}_{1}\right) * \frac{1}{11}\right.
$$

$$
\rightarrow \mathrm{Pr}_{\mathrm{s} 0}\left(\mathrm{C}\left(\mathrm{~S}_{0}\right)\right) * \mathrm{P}\left(\mathrm{~S}_{0}, \mathrm{~S}_{1}\right) *
$$

$$
\left(1-\mathrm{e}^{-220}\right) * \frac{1}{11}
$$

$$
\rightarrow 1 * \frac{2}{11} * 1 * \frac{1}{11}
$$

\mathbf{P}	S_{0}	$\mathrm{~S}_{1}$	$\mathrm{~S}_{2}$	$\mathrm{~S}_{3}$
$\mathrm{~S}_{0}$	$6 / 11$	$2 / 11$	$3 / 11$	0
$\mathrm{~S}_{1}$	0	$10 / 11$	0	$1 / 11$
$\mathrm{~S}_{2}$	0	0	0	1
$\mathrm{~S}_{3}$	0	0	0	1

$$
\rightarrow \frac{2}{11} * \frac{1}{11} \rightarrow \frac{2}{121}
$$

Transient and Steady-state Behaviour

- Transient behaviour $=$ state at time instant t
- Steady-state behaviour $=$ state at time $t \rightarrow \infty$
- We can assign probabilities to each state s' at specific times(e.g. Probability of being in S_{3} at time $t=2$) starting from a state s using the following definitions:
$-\pi_{s, t}^{c}\left(s^{\prime}\right)=\operatorname{Pr}_{s}\left(\left\{\omega \in \mathrm{C}(\mathrm{s}) \mid \omega @ \mathrm{t}=\mathrm{s}^{\prime}\right\}\right)$ for transient behaviour
- $\pi_{s}^{\mathrm{C}}\left(\mathrm{s}^{\prime}\right)=\lim _{\mathrm{t} \rightarrow \infty} \pi_{\mathrm{s}, \mathrm{t}}^{\mathrm{C}}\left(\mathrm{s}^{\prime}\right) \quad$ For steady-state behaviour
- But how do we compute those probabilities/sets?

Outline

- Revision
- Matrices
- Paths
- Uniformisation
- Model Checking - Putting it all together
- Summary

Uniformisation

- Because calculating uncountably infinite sets is unpractical, we have to resort to numerical solutions
- We can calculate the transient probability matrix $\Pi_{\mathrm{t}}^{\mathrm{c}}$ by a technique called Uniformisation
- Poisson distribution:
- The poisson distribution models the probability of k events occurring at time rate λ
- Intuitively very useful for CTMC
$-f(k ; \lambda)=\frac{\lambda^{k} e^{-\lambda}}{k!}$

Exponential Matrix

- Quick generating functions reminder:
$-\exp (x)=\sum_{n=0}^{\infty} \frac{1}{n!} x^{n}$
- We can express Π_{t}^{c} as a power series(using Master Equation and Chapman-Kolmogorov Equation \rightarrow see References):
- $\Pi_{t}^{c}=\exp (Q * t)=\sum_{n=0}^{\infty} \frac{1}{n!}(Q * t)^{n}$
- However, the computation of $\Pi_{\mathrm{t}}^{\mathrm{C}}$ can be unstable (round-off errors)

Better Approach

- We can uniformise a CTMC by creating a normalized probability matrix from the infinitesimal generator matrix Q :
$-P^{\text {unif }(C)}=I+\frac{Q}{q}$
- q is the maximal exit rate occurring in the states of the CTMC(in our example $q=110$)

\mathbf{Q}	S_{0}	$\mathrm{~S}_{1}$	$\mathrm{~S}_{2}$	$\mathrm{~S}_{3}$
$\mathrm{~S}_{0}$	-50	20	30	0
$\mathrm{~S}_{1}$	0	-10	0	10
$\mathrm{~S}_{2}$	0	0	-50	50
$\mathrm{~S}_{3}$	0	0	0	0

Punif(C)	S_{0}	S_{1}	S_{2}	S_{3}
S_{0}	6/11	2/11	3/11	0
S_{1}	0	10/11	0	1/11
S_{2}	0	0	6/11	5/11
S_{3}	0	0	0	0

Better Approach

- Using the normalized matrix we can now express Π_{t}^{c} in the following way(using the poisson distribution):

$$
\Pi_{\mathrm{t}}^{\mathrm{c}}=\sum_{\mathrm{n}=0}^{\infty} \frac{(\mathrm{qt})^{\mathrm{n}} * \mathrm{e}^{-\mathrm{qt}}}{\mathrm{n}!} *\left(\mathrm{P}^{\mathrm{unif}(\mathrm{C})}\right)^{\mathrm{n}}
$$

- Advantages:
- Punif(C) is stochastic and does not have negative numbers in contrast to $\mathrm{Q} \rightarrow$ more stable
- Poisson distribution can be calculated efficently
- The matrix multiplication can be rewritten as a vector-matrix multiplication
\rightarrow less computation

Outline

- Revision
- Matrices
- Paths
- Uniformisation
- Model Checking - Putting it all together
- Summary

CTL - Reminder

- Operators:
- Propositional Logic
- Probability-Operator P + Steady-state Operator S
- Next(unary, X Ф)
- Until with a time interval I(binary, $\left.\Phi U^{\mathbb{I}} \Psi\right)$
- All other temporal logic operators can be built from the until-operator

Genera1 Process

- We want to find the set of states that satisfy a CTL formula Φ
- We can use the normal inference rules for all parts of a property that only contain propositional logic
- We can use normal model checking for all other temporal operators
- We only have to do things differently(also to DTMC) when using the probability operator or the steady-state operator

Probability Operator

- We can can build all our temporal operators from the Untiloperator, except the Next-operator
- Therefore two cases:
- $\mathrm{P}_{\sim p}[\mathrm{X} \Phi] \rightarrow$ see DTMC
- $\mathrm{P}_{\sim p}\left[\Phi U^{I} \Psi\right]$ which we can again split into three cases:
- $I=[0, t]$
- $\mathrm{I}=\left[\mathrm{t}, \mathrm{t}\right.$ '] where $\mathrm{t} \leq \mathrm{t}^{\prime}$
- $\mathrm{I}=[\mathrm{t}, \infty)$

Case $I=[0, \mathrm{t}]$

- To calculate the probability for a specific start state s we can use the following formula:

$$
\operatorname{Prob}^{\mathrm{C}}\left(\mathrm{~s}, \Phi U^{[0, \mathrm{t}]} \Psi\right)=\sum_{\mathrm{s}^{\prime} \mid=\Psi} \pi_{\mathrm{s}, \mathrm{t}}^{\mathrm{Cl-} \mathrm{\Phi} \mathrm{\vee} \mathrm{\Psi]}}\left(\mathbf{s}^{\prime}\right)
$$

- Here, $C[\neg \Phi \vee \Psi]$ is the CTMC where we remove all outgoing connections from states where $\Phi U^{I} \Psi$ is either true or false but not pending/unresolved
- Calculating $\pi_{s, t}^{[\lceil\neg \vee \Psi]}\left(s^{\prime}\right)$ can be done with uniformisation
- This can be interpreted as the probability of reaching a satisfying state from start state s within t time units

Other Cases

- For $I=\left[t, t^{\prime}\right]$ we can split the calculation into two parts:
- The probability of satisfying Φ until time t
- The probability of satisfying $\Phi U^{\left[0, t^{\prime}-t\right]} \Psi$
- The two conditions are multiplied, and we get as expected:

$$
\operatorname{Prob}^{\mathrm{C}}\left(\mathrm{~s}, \Phi U^{\left[t, t^{\prime}\right]} \Psi\right)=\sum_{s^{\prime} \mid=\Phi} \pi_{\mathrm{s}, \mathrm{t}}^{\mathrm{C}[\Phi \Phi]}\left(\mathbf{s}^{\prime}\right) \sum_{\mathrm{s}^{\prime} \mid=\Psi} \pi_{\mathrm{s}, \mathrm{t}^{\mathrm{c}} \mathrm{t}-\mathrm{t}}^{\mathrm{C}[\Phi \vee \Psi]}\left(\mathbf{s}^{\prime}\right)
$$

- Although more complicated, we can do a similar thing with $I=[t, \infty)$

Steady-state Operator

- Again, we have to consider two cases:
- The CTMC is strongly connected
- The CTMC is not strongly connected
- In the first case we can solve the following equation system: $\pi^{\mathrm{C}} * \mathrm{Q}=0$ and $\sum_{\mathrm{s} \in \mathrm{S}} \pi^{\mathrm{C}}(\mathrm{s})=1$
- In the second case, we first have to identify all bottom strongly connected components(BSCC) and then calculate the probability of reaching each component

Mode1 Checking in PRISM

- PRISM transforms a model in specified in the PRISM language into an internal representation(discarding unreachable states), according to the chosen computation engine:
- MTBDD: Multi-terminal binary decision diagrams. BDD with e.g. real numbers as terminals(the bdd is encoded with rows and columns from the transition matrix)
- Sparse: Uses sparse matrices(I couldn't find out which exact technique PRISM uses)
- Hybrid: Combination of the above
- Explicit: Uses the transition matrix

Solving Linear Equations in PRISM

- As seen with the steady-state operator, we need to be able to solve linear equations
- PRISM provides many methods/options:
- Power method
- Jacobi method
- Gauss-Seidel method
- ...
- All those methods and uniformisation are iterative methods and are therefore terminated when they converge below an epsilon threshold

Statistica1 Mode1 Checking

- As shown last time, PRISM is also capable of solving model checking problems using its built-in discrete event simulator
- Currently, it only supports the operators P and R
- The process is analogously to hypothesis testing in statistics
- Different supported methods in PRISM are:
- CI Method: Testing against Student's t-distribution
- Asymptotic CI Method: Uses central limit theorem
- Approximate Probabilistic Model Checking
- Sequential Probability Ratio Test

Outline

- Revision
- Matrices
- Paths
- Uniformisation
- Model Checking - Putting it all together
- Summary

Summary

- We looked at the creation of various embedded matrices in CTMC(transition rate matrix, probability matrix, infinitesimal matrix, uniformised matrix)
- Various operators were defined for finite and infinite paths
- We discussed the process of calculating probabilities for transient and steady-state behaviour called uniformisation
- Using CTL, the calculation behind model checking, which is very similar to normal model checking extended by transient and steady-state operators, was shown

References

- Kwiatkowska, M., Norman, G., \& Parker, D. (2007, May). Stochastic model checking. In SFM (Vol. 7, pp. 220-270).
- Kwiatkowska, M., Norman, G., \& Parker, D. (2010, September). Advances and challenges of probabilistic model checking. In Communication, Control, and Computing (Allerton), 2010 48th Annual Allerton Conference on (pp. 1691-1698). IEEE.
- Stewart, W. J. (1994). Introduction to the numerical solution of Markov chains. Princeton University Press.

Questions?

