
  1/35

PRISM and CTMC

Mario Binder
WS 2017/2018



  2/35

Outline

● Revision

● Matrices

● Paths

● Uniformisation

● Model Checking – Putting it all together

● Summary



  3/35

CTMC

● Continuous-time Markov Chains

● Rates instead of probabilities

● Transition is chosen by race condition

● Example from last time:



  4/35

Outline

● Revision

● Matrices

● Paths

● Uniformisation

● Model Checking – Putting it all together

● Summary



  5/35

CTMC as Matrix

● We can create a transition matrix R of a CTMC

● The entries are 0 if there is no connection between states 
and the transition rates otherwise

  →
R S

0
S

1
S

2
S

3

S
0

60 20 30 0

S
1

0 100 0 10

S
2

0 0 0 50

S
3

0 0 0 0



  6/35

Probability Matrix from a 
CTMC

● We can also create a matrix of probabilities(similar to DTMC) 
from a CTMC

● A little bit of terminology(and revision):

– The Exit Rate of a state is defined as

i.e. the sum of all outgoing transition rates

– A state s is called absorbing if E(s) = 0

– The probability of a transition from s to s' is then:
● 1 if s=s' and s is absorbing

●              if s is not absorbing

● 0 otherwise

E(s)= ∑
s'∈S

R (s,s')

R (s ,s')
E(s)



  7/35

Probability Matrix from a 
CTMC

● We can now build a probability matrix P

  → 

● Note that if we wouldn't have extra rules for absorbing

states, we would have    for elements in the last row

● Therefore P(S3, S3) = 1

P S
0

S
1

S
2

S
3

S
0

6/11 2/11 3/11 0

S
1

0 10/11 0 1/11

S
2

0 0 0 1

S
3

0 0 0 1

0
0



  8/35

Infinitesimal Generator 
Matrix

● The infinitesimal generator matrix Q is essentially the same 
as the transition rate matrix R, except that the elements of 
the main diagonal are now                                    i.e.

the negative matrix row sum without the diagonal element

                                  →

● We will need this matrix later when talking about

uniformisation

−(( ∑
s'∈S

R (s ,s '))−R (s,s))

Q S
0

S
1

S
2

S
3

S
0

-50 20 30 0

S
1

0 -10 0 10

S
2

0 0 -50 50

S
3

0 0 0 0



  9/35

Outline

● Revision

● Matrices

● Paths

● Uniformisation

● Model Checking – Putting it all together

● Summary



  10/35

Paths

● An infinite path ω is a sequence

● The t-values specify the amount of time spent in a state

● Notation:

–       is the i-th state of the path

– time(ω, i) is the same as ti

– ω@t is the state in the path at time t

● A finite path ω is a sequence s0t0s1t1 … sk-1tk-1sk, where

sk is an absorbing state

– time(ω, i) is the same as with infinite paths as

long as      ; otherwise time(ω, i) = ∞

s0 t0s1 t1...

ω(i)

i≤k



  11/35

Example

● Finite path ω = S0-0.5 S2-0.8 S3

● ω(1) = S2

● time(ω, 0) = 0.5

● time(ω, 2) = ∞

● ω@1 = S2

● ω@0.3 = S0

● ω@1000 = S3



  12/35

Set of Paths

● The next thing we want to do, is to span a probability space 
starting from a start state s0

● This means we are searching for a function μ, that takes a 
start state s0, a CTMC C and some set of paths S starting 
from s0 and returns the following:

– 0 if S = (the empty set)∅
– 1 if S = All possible paths in all possible intervals from s0

– The cardinality of S divided by the cardinality of all

possible paths from s0, otherwise



  13/35

Important Observations

● The set of all possible paths starting from s0 is uncountable if 
E(s0) > 0, because time 

● If we have found a function μ and we give it a path ω, 

μ(ω) = 0 for all valid paths

● For this reason, we do not only have to pass a path in the 
sense of a DTMC to μ but also time intervals I

t∈ℝ
≥0



  14/35

Notations

● The cylinder set C(ωfin) is as in DTMC the set of all paths 
starting with ωfin. However, ωfin is now a sequence 

s0I0s1I1...sk-1Ik-1Sk, where Ii is a non-empty interval in ℝ
● Using cylinder sets, we can recursively define our function μ, 

which we will now call Pr:

– Prs(C(s)) = 1

– Prs(C(s, I, …,  Ik-2,Sk-1, Ik-1, Sk)) =

Prs(C(s, I, …, Ik-2, Sk-1)) * P(Sk-1, Sk) *

e
−E(s

k−1
)∗inf I

k−1−e
−E(s

k−1
)∗supI

k−1



  15/35

Example

● PrS0(C(S0, [0, 2], S1, [0, 4], S3)

 → PrS0(C(S0, [0, 2], S1) *

P(S1, S3) * (1 – e-440)

 → PrS0(C(S0, [0, 2], S1) * 

 → PrS0(C(S0)) * P(S0, S1) *

(1 – e-220) *

→1 *      * 1 *

      → *        →

    

P S
0

S
1

S
2

S
3

S
0

6/11 2/11 3/11 0

S
1

0 10/11 0 1/11

S
2

0 0 0 1

S
3

0 0 0 1

1
11

1
11

2
11

1
11

2
11

1
11

2
121



  16/35

Transient and Steady-state 
Behaviour

● Transient behaviour = state at time instant t

● Steady-state behaviour = state at time t  → ∞

● We can assign probabilities to each state s' at specific 
times(e.g. Probability of being in S3 at time t = 2) starting 
from a state s using the following definitions:

–                                            for transient behaviour

–                           For steady-state behaviour

● But how do we compute those probabilities/sets?

πs, t
C

(s ')=Prs({ω∈C(s)|ω@t=s '})

πs
C(s')=lim

t→∞

πs,t
C (s ')



  17/35

Outline

● Revision

● Matrices

● Paths

● Uniformisation

● Model Checking – Putting it all together

● Summary



  18/35

Uniformisation

● Because calculating uncountably infinite sets is unpractical, 
we have to resort to numerical solutions

● We can calculate the transient probability matrix     by a 
technique called Uniformisation

● Poisson distribution:

– The poisson distribution models the probability of k 
events occurring at time rate λ

– Intuitively very useful for CTMC

–

Πt
C

f (k ;λ)=
λ

ke−λ

k !



  19/35

Exponential Matrix

● Quick generating functions reminder:

–

● We can express     as a power series(using Master 
Equation and Chapman-Kolmogorov Equation  see →
References):

–

● However, the computation of      can be unstable

(round-off errors)

exp(x)= ∑
n=0

∞ 1
n!

xn

Πt
C

Πt
C
=exp(Q∗t)= ∑

n=0

∞ 1
n!

(Q∗t)n

Πt
C



  20/35

Better Approach

● We can uniformise a CTMC by creating a normalized 
probability matrix from the infinitesimal generator matrix Q:

–

– q is the maximal exit rate occurring in the states of the 
CTMC(in our example q = 110)

Punif (C)
=I+Q

q

Q S
0

S
1

S
2

S
3

S
0

-50 20 30 0

S
1

0 -10 0 10

S
2

0 0 -50 50

S
3

0 0 0 0

Punif(C) S
0

S
1

S
2

S
3

S
0

6/11 2/11 3/11 0

S
1

0 10/11 0 1/11

S
2

0 0 6/11 5/11

S
3

0 0 0 0



  21/35

Better Approach

● Using the normalized matrix we can now express      in the 
following way(using the poisson distribution): 

● Advantages:

– Punif(C) is stochastic and does not have negative numbers in 
contrast to Q  more stable→

– Poisson distribution can be calculated efficently

– The matrix multiplication can be rewritten

as a vector-matrix multiplication 

 → less computation

Πt
C

Πt
C
= ∑

n=0

∞ (qt)n∗e−qt

n!
∗(Punif (C)

)n



  22/35

Outline

● Revision

● Matrices

● Paths

● Uniformisation

● Model Checking – Putting it all together

● Summary



  23/35

CTL – Reminder

● Operators:

– Propositional Logic

– Probability-Operator P + Steady-state Operator S

– Next(unary, X Φ)

– Until with a time interval I(binary, Φ UI Ψ)

● All other temporal logic operators can be built from

the until-operator



  24/35

General Process

● We want to find the set of states that satisfy a CTL formula Φ

● We can use the normal inference rules for all parts of

a property that only contain propositional logic

● We can use normal model checking for all other temporal 
operators

● We only have to do things differently(also to DTMC)       
when using the probability operator or the steady-state 
operator



  25/35

Probability Operator

● We can can build all our temporal operators from the Until-
operator, except the Next-operator

● Therefore two cases:

– P~p[X Φ]  see DTMC→
– P~p[Φ UI Ψ] which we can again split into three cases:

● I = [0, t]
● I = [t, t'] where
● I = [t, ∞) 

t≤t '



  26/35

Case I = [0, t]

● To calculate the probability for a specific start state s we can 
use the following formula:

● Here,               is the CTMC where we remove all outgoing 
connections from states where Φ UI Ψ is either true or false 
but not pending/unresolved

● Calculating                can be done with uniformisation

● This can be interpreted as the probability of reaching a 
satisfying state from start state s within t time units

ProbC
(s,ΦU[0, t]

Ψ)= ∑
s'|=Ψ

πs,t
C[¬Φ∨Ψ]

(s ')

πs, t
C [¬Φ∨Ψ]

(s')

C [¬Φ∨Ψ]



  27/35

Other Cases

● For I = [t, t'] we can split the calculation into two parts:

– The probability of satisfying Φ until time t

– The probability of satisfying Φ U[0, t'-t] Ψ
● The two conditions are multiplied, and we get as expected:

● Although more complicated, we can do a similar thing

with I = [t, ∞) 

ProbC(s,ΦU[ t ,t ']Ψ)= ∑
s'|=Φ

πs, t
C [¬Φ](s') ∑

s'|=Ψ

πs, t '−t
C [¬Φ∨Ψ](s')



  28/35

Steady-state Operator

● Again, we have to consider two cases:

– The CTMC is strongly connected

– The CTMC is not strongly connected
● In the first case we can solve the following equation system:

● In the second case, we first have to identify all bottom 
strongly connected components(BSCC) and then 
calculate the probability of reaching each component

π
C
∗Q=0and ∑

s∈S
π

C
(s)=1



  29/35

Model Checking in PRISM

● PRISM transforms a model in specified in the PRISM 
language into an internal representation(discarding 
unreachable states), according to the chosen computation 
engine:

– MTBDD: Multi-terminal binary decision diagrams. BDD 
with e.g. real numbers as terminals(the bdd is encoded 
with rows and columns from the transition matrix)

– Sparse: Uses sparse matrices(I couldn't find out which 
exact technique PRISM uses)

– Hybrid: Combination of the above

– Explicit: Uses the transition matrix



  30/35

Solving Linear Equations 
in PRISM

● As seen with the steady-state operator, we need to be able 
to solve linear equations

● PRISM provides many methods/options:

– Power method

– Jacobi method

– Gauss-Seidel method

– …
● All those methods and uniformisation are iterative

methods and are therefore terminated when they

converge below an epsilon threshold



  31/35

Statistical Model Checking

● As shown last time, PRISM is also capable of solving model 
checking problems using its built-in discrete event simulator

● Currently, it only supports the operators P and R

● The process is analogously to hypothesis testing in 
statistics

● Different supported methods in PRISM are:

– CI Method: Testing against Student's t-distribution

– Asymptotic CI Method: Uses central limit theorem

– Approximate Probabilistic Model Checking

– Sequential Probability Ratio Test



  32/35

Outline

● Revision

● Matrices

● Paths

● Uniformisation

● Model Checking – Putting it all together

● Summary



  33/35

Summary

● We looked at the creation of various embedded matrices in 
CTMC(transition rate matrix, probability matrix, 
infinitesimal matrix, uniformised matrix)

● Various operators were defined for finite and infinite paths

● We discussed the process of calculating probabilities for 
transient and steady-state behaviour called uniformisation

● Using CTL, the calculation behind model checking, which is 
very similar to normal model checking extended by transient 
and steady-state operators, was shown



  34/35

References

● Kwiatkowska, M., Norman, G., & Parker, D. (2007, May). 
Stochastic model checking. In SFM (Vol. 7, pp. 220-270).

● Kwiatkowska, M., Norman, G., & Parker, D. (2010, 
September). Advances and challenges of probabilistic model 
checking. In Communication, Control, and Computing 
(Allerton), 2010 48th Annual Allerton Conference on (pp. 
1691-1698). IEEE.

● Stewart, W. J. (1994). Introduction to the numerical solution 
of Markov chains. Princeton University Press.



  35/35

Questions?


	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Folie 16
	Folie 17
	Folie 18
	Folie 19
	Folie 20
	Folie 21
	Folie 22
	Folie 23
	Folie 24
	Folie 25
	Folie 26
	Folie 27
	Folie 28
	Folie 29
	Folie 30
	Folie 31
	Folie 32
	Folie 33
	Folie 34
	Folie 35

