PRISM and CTMC

Mario Binder WS 2017/2018

Outline

- Revision
- Matrices
- Paths
- Uniformisation
- Model Checking Putting it all together
- Summary

CTMC

- Continuous-time Markov Chains
- Rates instead of probabilities
- Transition is chosen by race condition
- Example from last time:

Outline

- Revision
- Matrices
- Paths
- Uniformisation
- Model Checking Putting it all together
- Summary

CTMC as Matrix

- We can create a transition matrix **R** of a CTMC
- The entries are 0 if there is no connection between states and the transition rates otherwise

Probability Matrix from a CTMC

- We can also create a matrix of probabilities(similar to DTMC) from a CTMC
- A little bit of terminology(and revision):
 - The **Exit Rate** of a state is defined as $E(s) = \sum_{s' \in S} R(s, s')$ i.e. the sum of all outgoing transition rates

- A state s is called **absorbing** if E(s) = 0
- The probability of a transition from s to s' is then:
 - 1 if s=s' and s is absorbing
 - $\frac{\mathbf{R}(\mathbf{s},\mathbf{s}')}{\mathbf{E}(\mathbf{s})}$ if s is not absorbing
 - **0** otherwise

Probability Matrix from a CTMC

We can now build a probability matrix P

Ρ	S ₀	S ₁	S ₂	S ₃
S ₀	6/11	2/11	3/11	0
S ₁	0	10/11	0	1/11
S ₂	0	0	0	1
S ₃	0	0	0	1

- Note that if we wouldn't have extra rules for absorbing states, we would have $\frac{0}{0}$ for elements in the last row
- Therefore $P(S_3, S_3) = 1$

Infinitesimal Generator Matrix

• The infinitesimal generator matrix ${\bf Q}$ is essentially the same as the transition rate matrix ${\bf R}$, except that the elements of the main diagonal are now $-((\sum\limits_{{\bf s}'\in {\bf S}} {\bf R}({\bf s},{\bf s}'))-{\bf R}({\bf s},{\bf s}))$ i.e.

the negative matrix row sum without the diagonal element

Q	S ₀	S ₁	S ₂	S ₃
S ₀	-50	20	30	0
S ₁	0	-10	0	10
S ₂	0	0	-50	50
S ₃	0	0	0	0

 We will need this matrix later when talking about uniformisation

Outline

- Revision
- Matrices
- Paths
- Uniformisation
- Model Checking Putting it all together
- Summary

Paths

- An **infinite path** ω is a sequence $s_0 t_0 s_1 t_1 \dots$
- The t-values specify the amount of time spent in a state
- Notation:
 - $\omega(i)$ is the i-th state of the path
 - time(ω , i) is the same as t_i
 - ω @t is the state in the path at time t
- A finite path ω is a sequence s₀t₀s₁t₁ ... s_{k-1}t_{k-1}s_k, where
 - s_k is an absorbing state
 - time(ω , i) is the same as with infinite paths as long as i \leq k; otherwise time(ω , i) = ∞

Example

- Finite path $\omega = S_0^{-} 0.5 S_2^{-} 0.8 S_3^{-}$
- $\omega(1) = \frac{S_2}{2}$
- time(ω , 0) = 0.5
- time(ω , 2) = ∞
- $\omega @1 = S_2$
- $\omega @ 0.3 = S_0$
- $\omega @1000 = S_3$

Set of Paths

- The next thing we want to do, is to span a probability space starting from a start state ${\rm s_0}$
- This means we are searching for a function µ, that takes a start state s₀, a CTMC C and some set of paths S starting from s₀ and returns the following:
 - 0 if S = \emptyset (the empty set)
 - 1 if S = All possible paths in all possible intervals from s_0

12/35

- The cardinality of **S** divided by the cardinality of all possible paths from s_0 , otherwise

Important Observations

- The set of all possible paths starting from s₀ is uncountable if E(s₀) > 0, because time t∈R_{≥0}
- If we have found a function μ and we give it a path ω,
 μ(ω) = 0 for all valid paths
- For this reason, we do not only have to pass a path in the sense of a DTMC to µ but also time intervals I

Notations

• The cylinder set C(ω_{fin}) is as in DTMC the set of all paths starting with ω_{fin} . However, ω_{fin} is now a sequence

 $s_0I_0s_1I_1...s_{k-1}I_{k-1}S_k$, where I_i is a non-empty interval in \mathbb{R}

 Using cylinder sets, we can recursively define our function µ, which we will now call Pr:

$$- \Pr_{s}(C(s)) = 1$$

-
$$\Pr_{s}(C(s, I, ..., I_{k-2}, S_{k-1}, I_{k-1}, S_{k})) =$$

 $\Pr_{s}(C(s, I, ..., I_{k-2}, S_{k-1})) * \Pr(S_{k-1}, S_{k}) *$
 $e^{-E(s_{k-1})*infI_{k-1}} - e^{-E(s_{k-1})*supI_{k-1}}$

Example

• Pr_{s0}(C(S₀, [0, 2], S₁, [0, 4], S₃) $\rightarrow Pr_{S0}(C(S_0, [0, 2], S_1) *$ $P(S_1, S_2) * (1 - e^{-440})$ $\rightarrow Pr_{S0}(C(S_0, [0, 2], S_1) * \frac{1}{11})$ $\rightarrow Pr_{S0}(C(S_0)) * P(S_0, S_1) *$ $(1 - e^{-220}) * \frac{1}{11}$ $\rightarrow 1 * \frac{2}{11} * 1 * \frac{1}{11}$ $\rightarrow \frac{2}{11} * \frac{1}{11} \rightarrow \frac{2}{121}$

Ρ	S ₀	S ₁	S ₂	S ₃
S ₀	6/11	2/11	3/11	0
S ₁	0	10/11	0	1/11
S ₂	0	0	0	1
S ₃	0	0	0	1

Transient and Steady-state Behaviour

- **Transient behaviour** = state at time instant t
- **Steady-state behaviour** = state at time $t \rightarrow \infty$
- We can assign probabilities to each state s' at specific times(e.g. Probability of being in S₃ at time t = 2) starting from a state s using the following definitions:

- $\pi_{s,t}^{C}(s') = \Pr_{s}(\{\omega \in C(s) \mid \omega @t=s'\})$ for transient behaviour - $\pi_{s}^{C}(s') = \lim_{t \to \infty} \pi_{s,t}^{C}(s')$ For steady-state behaviour

16/35

• But how do we compute those probabilities/sets?

Outline

- Revision
- Matrices
- Paths
- Uniformisation
- Model Checking Putting it all together
- Summary

Uniformisation

- Because calculating uncountably infinite sets is unpractical, we have to resort to numerical solutions
- We can calculate the transient probability matrix Π^{C}_{t} by a technique called **Uniformisation**
- Poisson distribution:
 - The poisson distribution models the probability of k events occurring at time rate λ

18/35

- Intuitively very useful for CTMC

-
$$f(k;\lambda) = \frac{\lambda^k e^{-\lambda}}{k!}$$

Exponential Matrix

• Quick generating functions reminder:

-
$$\exp(\mathbf{x}) = \sum_{n=0}^{\infty} \frac{1}{n!} \mathbf{x}^n$$

• We can express Π_t^c as a power series(using Master Equation and Chapman-Kolmogorov Equation \rightarrow see References):

19/35

-
$$\Pi_{t}^{C} = \exp(Q * t) = \sum_{n=0}^{\infty} \frac{1}{n!} (Q * t)^{n}$$

• However, the computation of Π_t^c can be unstable (round-off errors)

Better Approach

- We can **uniformise** a CTMC by creating a normalized probability matrix from the infinitesimal generator matrix Q: $-P^{unif(C)} = I + \frac{Q}{q}$
 - q is the maximal exit rate occurring in the states of the CTMC(in our example q = 110)

Q	S ₀	S ₁	S ₂	S ₃
S ₀	-50	20	30	0
S ₁	0	-10	0	10
S ₂	0	0	-50	50
S ₃	0	0	0	0

P ^{unif(C)}	S ₀	S ₁	S ₂	S ₃	
S ₀	6/11	2/11	3/11	0	
S ₁	0	10/11	0	1/11	
S ₂	0	0	6/11	5/11	
S ₃	0	0	0	0	

Better Approach

• Using the normalized matrix we can now express Π_t^c in the following way(using the poisson distribution):

$$\Pi_{t}^{C} = \sum_{n=0}^{\infty} \frac{(qt)^{n} * e^{-qt}}{n!} * (P^{unif(C)})^{n}$$

- Advantages:
 - $P^{\text{unif}(C)}$ is stochastic and does not have negative numbers in contrast to $Q \rightarrow$ more stable

- Poisson distribution can be calculated efficently
- The matrix multiplication can be rewritten as a vector-matrix multiplication
 - \rightarrow less computation

Outline

- Revision
- Matrices
- Paths
- Uniformisation
- Model Checking Putting it all together
- Summary

CTL – Reminder

- Operators:
 - Propositional Logic
 - Probability-Operator P + Steady-state Operator S
 - Next(unary, X Φ)
 - Until with a time interval I(binary, $\Phi U^{I} \Psi$)
- All other temporal logic operators can be built from the until-operator

General Process

- We want to find the set of states that satisfy a CTL formula Φ
- We can use the normal inference rules for all parts of a property that only contain propositional logic
- We can use normal model checking for all other temporal operators

24/35

 We only have to do things differently(also to DTMC) when using the probability operator or the steady-state operator

Probability Operator

- We can can build all our temporal operators from the Untiloperator, except the Next-operator
- Therefore two cases:
 - $P_{\sim p}[X \Phi] \rightarrow see DTMC$
 - $P_{\sim p}[\Phi U^{I} \Psi]$ which we can again split into three cases:

- I = [0, t]
- I = [t, t'] where $t \le t'$
- I = [t, ∞)

Case I = [0, t]

• To calculate the probability for a specific start state s we can use the following formula: $Preh^{C}(a \oplus U^{[0,t]})W = \sum_{i=1}^{C} e^{-(\nabla \Psi)}(a_{i})$

$$\operatorname{Prob}^{\mathsf{C}}(\mathsf{s}, \Phi \mathsf{U}^{[0, t]} \Psi) = \sum_{\mathsf{s}' \models \Psi} \pi_{\mathsf{s}, \mathsf{t}}^{\mathsf{C}[\neg \Phi \lor \Psi]}(\mathsf{s}')$$

• Here, $C[\neg \Phi \lor \Psi]$ is the CTMC where we remove all outgoing connections from states where $\Phi U^{I} \Psi$ is either true or false but not pending/unresolved

- Calculating $\pi_{s,t}^{C[\neg\Phi\lor\Psi]}(s')$ can be done with uniformisation
- This can be interpreted as the probability of reaching a satisfying state from start state s *within* t time units

Other Cases

- For I = [t, t'] we can split the calculation into two parts:
 - The probability of satisfying Φ until time t
 - The probability of satisfying $\Phi \; U^{[0,\;t'\text{-}t]} \; \Psi$
- The two conditions are multiplied, and we get as expected:

27/35

$$\operatorname{Prob}^{\mathsf{C}}(\mathsf{s}, \Phi \mathsf{U}^{[\mathsf{t}, \mathsf{t}']} \Psi) = \sum_{\mathsf{s}'} \pi_{\mathsf{s}, \mathsf{t}}^{\mathsf{C}[\neg \Phi]}(\mathsf{s}') \sum_{\mathsf{s}'} \pi_{\mathsf{s}, \mathsf{t}'-\mathsf{t}}^{\mathsf{C}[\neg \Phi \lor \Psi]}(\mathsf{s}')$$

 Although more complicated, we can do a similar thing with I = [t, ∞)

Steady-state Operator

- Again, we have to consider two cases:
 - The CTMC is strongly connected
 - The CTMC is not strongly connected
- In the first case we can solve the following equation system: $\pi^{C} * Q = 0$ and $\sum_{s \in S} \pi^{C}(s) = 1$

28/35

 In the second case, we first have to identify all bottom strongly connected components(BSCC) and then calculate the probability of reaching each component

Model Checking in PRISM

- PRISM transforms a model in specified in the PRISM language into an internal representation(discarding unreachable states), according to the chosen computation engine:
 - MTBDD: Multi-terminal binary decision diagrams. BDD with e.g. real numbers as terminals(the bdd is encoded with rows and columns from the transition matrix)
 - Sparse: Uses sparse matrices(I couldn't find out which exact technique PRISM uses)

- Hybrid: Combination of the above
- **Explicit:** Uses the transition matrix

Solving Linear Equations in PRISM

- As seen with the steady-state operator, we need to be able to solve linear equations
- PRISM provides many methods/options:
 - Power method
 - Jacobi method
 - Gauss-Seidel method
 - ...
- All those methods and uniformisation are iterative methods and are therefore terminated when they converge below an epsilon threshold

Statistical Model Checking

- As shown last time, PRISM is also capable of solving model checking problems using its built-in discrete event simulator
- Currently, it only supports the operators P and R
- The process is analogously to hypothesis testing in statistics
- Different supported methods in PRISM are:
 - **CI Method:** Testing against Student's t-distribution
 - Asymptotic CI Method: Uses central limit theorem

- Approximate Probabilistic Model Checking
- Sequential Probability Ratio Test

Outline

- Revision
- Matrices
- Paths
- Uniformisation
- Model Checking Putting it all together
- Summary

Summary

- We looked at the creation of various embedded matrices in CTMC(transition rate matrix, probability matrix, infinitesimal matrix, uniformised matrix)
- Various operators were defined for finite and infinite paths
- We discussed the process of calculating probabilities for transient and steady-state behaviour called uniformisation
- Using CTL, the calculation behind model checking, which is very similar to normal model checking extended by transient and steady-state operators, was shown

References

- Kwiatkowska, M., Norman, G., & Parker, D. (2007, May). Stochastic model checking. In SFM (Vol. 7, pp. 220-270).
- Kwiatkowska, M., Norman, G., & Parker, D. (2010, September). Advances and challenges of probabilistic model checking. In Communication, Control, and Computing (Allerton), 2010 48th Annual Allerton Conference on (pp. 1691-1698). IEEE.
- Stewart, W. J. (1994). Introduction to the numerical solution of Markov chains. Princeton University Press.

Questions?

