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CTMC

● Continuous-time Markov Chains

● Rates instead of probabilities

● Transition is chosen by race condition

● Example from last time:
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CTMC as Matrix

● We can create a transition matrix R of a CTMC

● The entries are 0 if there is no connection between states 
and the transition rates otherwise

  →
R S

0
S

1
S

2
S

3

S
0

60 20 30 0

S
1

0 100 0 10

S
2

0 0 0 50

S
3

0 0 0 0
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Probability Matrix from a 
CTMC

● We can also create a matrix of probabilities(similar to DTMC) 
from a CTMC

● A little bit of terminology(and revision):

– The Exit Rate of a state is defined as

i.e. the sum of all outgoing transition rates

– A state s is called absorbing if E(s) = 0

– The probability of a transition from s to s' is then:
● 1 if s=s' and s is absorbing

●              if s is not absorbing

● 0 otherwise

E(s)= ∑
s'∈S

R (s,s')

R (s ,s')
E(s)
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Probability Matrix from a 
CTMC

● We can now build a probability matrix P

  → 

● Note that if we wouldn't have extra rules for absorbing

states, we would have    for elements in the last row

● Therefore P(S3, S3) = 1

P S
0

S
1

S
2

S
3

S
0

6/11 2/11 3/11 0

S
1

0 10/11 0 1/11

S
2

0 0 0 1

S
3

0 0 0 1

0
0
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Infinitesimal Generator 
Matrix

● The infinitesimal generator matrix Q is essentially the same 
as the transition rate matrix R, except that the elements of 
the main diagonal are now                                    i.e.

the negative matrix row sum without the diagonal element

                                  →

● We will need this matrix later when talking about

uniformisation

−(( ∑
s'∈S

R (s ,s '))−R (s,s))

Q S
0

S
1

S
2

S
3

S
0

-50 20 30 0

S
1

0 -10 0 10

S
2

0 0 -50 50

S
3

0 0 0 0
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Paths

● An infinite path ω is a sequence

● The t-values specify the amount of time spent in a state

● Notation:

–       is the i-th state of the path

– time(ω, i) is the same as ti

– ω@t is the state in the path at time t

● A finite path ω is a sequence s0t0s1t1 … sk-1tk-1sk, where

sk is an absorbing state

– time(ω, i) is the same as with infinite paths as

long as      ; otherwise time(ω, i) = ∞

s0 t0s1 t1...

ω(i)

i≤k
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Example

● Finite path ω = S0-0.5 S2-0.8 S3

● ω(1) = S2

● time(ω, 0) = 0.5

● time(ω, 2) = ∞

● ω@1 = S2

● ω@0.3 = S0

● ω@1000 = S3
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Set of Paths

● The next thing we want to do, is to span a probability space 
starting from a start state s0

● This means we are searching for a function μ, that takes a 
start state s0, a CTMC C and some set of paths S starting 
from s0 and returns the following:

– 0 if S = (the empty set)∅
– 1 if S = All possible paths in all possible intervals from s0

– The cardinality of S divided by the cardinality of all

possible paths from s0, otherwise
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Important Observations

● The set of all possible paths starting from s0 is uncountable if 
E(s0) > 0, because time 

● If we have found a function μ and we give it a path ω, 

μ(ω) = 0 for all valid paths

● For this reason, we do not only have to pass a path in the 
sense of a DTMC to μ but also time intervals I

t∈ℝ
≥0
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Notations

● The cylinder set C(ωfin) is as in DTMC the set of all paths 
starting with ωfin. However, ωfin is now a sequence 

s0I0s1I1...sk-1Ik-1Sk, where Ii is a non-empty interval in ℝ
● Using cylinder sets, we can recursively define our function μ, 

which we will now call Pr:

– Prs(C(s)) = 1

– Prs(C(s, I, …,  Ik-2,Sk-1, Ik-1, Sk)) =

Prs(C(s, I, …, Ik-2, Sk-1)) * P(Sk-1, Sk) *

e
−E(s

k−1
)∗inf I

k−1−e
−E(s

k−1
)∗supI

k−1
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Example

● PrS0(C(S0, [0, 2], S1, [0, 4], S3)

 → PrS0(C(S0, [0, 2], S1) *

P(S1, S3) * (1 – e-440)

 → PrS0(C(S0, [0, 2], S1) * 

 → PrS0(C(S0)) * P(S0, S1) *

(1 – e-220) *

→1 *      * 1 *

      → *        →

    

P S
0

S
1

S
2

S
3

S
0

6/11 2/11 3/11 0

S
1

0 10/11 0 1/11

S
2

0 0 0 1

S
3

0 0 0 1

1
11

1
11

2
11

1
11

2
11

1
11

2
121
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Transient and Steady-state 
Behaviour

● Transient behaviour = state at time instant t

● Steady-state behaviour = state at time t  → ∞

● We can assign probabilities to each state s' at specific 
times(e.g. Probability of being in S3 at time t = 2) starting 
from a state s using the following definitions:

–                                            for transient behaviour

–                           For steady-state behaviour

● But how do we compute those probabilities/sets?

πs, t
C

(s ')=Prs({ω∈C(s)|ω@t=s '})

πs
C(s')=lim

t→∞

πs,t
C (s ')
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Uniformisation

● Because calculating uncountably infinite sets is unpractical, 
we have to resort to numerical solutions

● We can calculate the transient probability matrix     by a 
technique called Uniformisation

● Poisson distribution:

– The poisson distribution models the probability of k 
events occurring at time rate λ

– Intuitively very useful for CTMC

–

Πt
C

f (k ;λ)=
λ

ke−λ

k !
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Exponential Matrix

● Quick generating functions reminder:

–

● We can express     as a power series(using Master 
Equation and Chapman-Kolmogorov Equation  see →
References):

–

● However, the computation of      can be unstable

(round-off errors)

exp(x)= ∑
n=0

∞ 1
n!

xn

Πt
C

Πt
C
=exp(Q∗t)= ∑

n=0

∞ 1
n!

(Q∗t)n

Πt
C
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Better Approach

● We can uniformise a CTMC by creating a normalized 
probability matrix from the infinitesimal generator matrix Q:

–

– q is the maximal exit rate occurring in the states of the 
CTMC(in our example q = 110)

Punif (C)
=I+Q

q

Q S
0

S
1

S
2

S
3

S
0

-50 20 30 0

S
1

0 -10 0 10

S
2

0 0 -50 50

S
3

0 0 0 0

Punif(C) S
0

S
1

S
2

S
3

S
0

6/11 2/11 3/11 0

S
1

0 10/11 0 1/11

S
2

0 0 6/11 5/11

S
3

0 0 0 0
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Better Approach

● Using the normalized matrix we can now express      in the 
following way(using the poisson distribution): 

● Advantages:

– Punif(C) is stochastic and does not have negative numbers in 
contrast to Q  more stable→

– Poisson distribution can be calculated efficently

– The matrix multiplication can be rewritten

as a vector-matrix multiplication 

 → less computation

Πt
C

Πt
C
= ∑

n=0

∞ (qt)n∗e−qt

n!
∗(Punif (C)

)n
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CTL – Reminder

● Operators:

– Propositional Logic

– Probability-Operator P + Steady-state Operator S

– Next(unary, X Φ)

– Until with a time interval I(binary, Φ UI Ψ)

● All other temporal logic operators can be built from

the until-operator
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General Process

● We want to find the set of states that satisfy a CTL formula Φ

● We can use the normal inference rules for all parts of

a property that only contain propositional logic

● We can use normal model checking for all other temporal 
operators

● We only have to do things differently(also to DTMC)       
when using the probability operator or the steady-state 
operator
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Probability Operator

● We can can build all our temporal operators from the Until-
operator, except the Next-operator

● Therefore two cases:

– P~p[X Φ]  see DTMC→
– P~p[Φ UI Ψ] which we can again split into three cases:

● I = [0, t]
● I = [t, t'] where
● I = [t, ∞) 

t≤t '
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Case I = [0, t]

● To calculate the probability for a specific start state s we can 
use the following formula:

● Here,               is the CTMC where we remove all outgoing 
connections from states where Φ UI Ψ is either true or false 
but not pending/unresolved

● Calculating                can be done with uniformisation

● This can be interpreted as the probability of reaching a 
satisfying state from start state s within t time units

ProbC
(s,ΦU[0, t]

Ψ)= ∑
s'|=Ψ

πs,t
C[¬Φ∨Ψ]

(s ')

πs, t
C [¬Φ∨Ψ]

(s')

C [¬Φ∨Ψ]
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Other Cases

● For I = [t, t'] we can split the calculation into two parts:

– The probability of satisfying Φ until time t

– The probability of satisfying Φ U[0, t'-t] Ψ
● The two conditions are multiplied, and we get as expected:

● Although more complicated, we can do a similar thing

with I = [t, ∞) 

ProbC(s,ΦU[ t ,t ']Ψ)= ∑
s'|=Φ

πs, t
C [¬Φ](s') ∑

s'|=Ψ

πs, t '−t
C [¬Φ∨Ψ](s')
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Steady-state Operator

● Again, we have to consider two cases:

– The CTMC is strongly connected

– The CTMC is not strongly connected
● In the first case we can solve the following equation system:

● In the second case, we first have to identify all bottom 
strongly connected components(BSCC) and then 
calculate the probability of reaching each component

π
C
∗Q=0and ∑

s∈S
π

C
(s)=1
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Model Checking in PRISM

● PRISM transforms a model in specified in the PRISM 
language into an internal representation(discarding 
unreachable states), according to the chosen computation 
engine:

– MTBDD: Multi-terminal binary decision diagrams. BDD 
with e.g. real numbers as terminals(the bdd is encoded 
with rows and columns from the transition matrix)

– Sparse: Uses sparse matrices(I couldn't find out which 
exact technique PRISM uses)

– Hybrid: Combination of the above

– Explicit: Uses the transition matrix
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Solving Linear Equations 
in PRISM

● As seen with the steady-state operator, we need to be able 
to solve linear equations

● PRISM provides many methods/options:

– Power method

– Jacobi method

– Gauss-Seidel method

– …
● All those methods and uniformisation are iterative

methods and are therefore terminated when they

converge below an epsilon threshold
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Statistical Model Checking

● As shown last time, PRISM is also capable of solving model 
checking problems using its built-in discrete event simulator

● Currently, it only supports the operators P and R

● The process is analogously to hypothesis testing in 
statistics

● Different supported methods in PRISM are:

– CI Method: Testing against Student's t-distribution

– Asymptotic CI Method: Uses central limit theorem

– Approximate Probabilistic Model Checking

– Sequential Probability Ratio Test
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Summary

● We looked at the creation of various embedded matrices in 
CTMC(transition rate matrix, probability matrix, 
infinitesimal matrix, uniformised matrix)

● Various operators were defined for finite and infinite paths

● We discussed the process of calculating probabilities for 
transient and steady-state behaviour called uniformisation

● Using CTL, the calculation behind model checking, which is 
very similar to normal model checking extended by transient 
and steady-state operators, was shown
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Questions?
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