| Gruppe | Hemmecke (10:15) | Hemmecke (11:00) | Popov | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Name | | Matrikel | | | | | | SKZ | |

Klausur 2

Berechenbarkeit und Komplexität

12. Januar 2018

Part 1 RecFun2017
Let $f, g: \mathbb{N} \rightarrow_{P} \mathbb{N}$ be two partial functions that are defined as follows:

$$
f(x)=\left\{\begin{array}{ll}
0 & \text { if } x=0, \\
\text { undefined } & \text { if } x=1, \\
2 f(x-2) & \text { otherwise }
\end{array} \quad g(x)= \begin{cases}x^{2} & \text { if } x \text { is odd }, \\
\text { undefined } & \text { otherwise }\end{cases}\right.
$$

Let $F(x)=f(f(2 x))$ and $h(x)=f(x)+g(x)$.

$\mathbf{1}$		no
$\mathbf{2}$	yes	

Is f primitive recursive?
Is F primitive recursive?
Obviously, is f defined for even input and has an even result in these cases. Thus $f(2 x)=2 f(2(x-1))=\cdots=2^{x} f(0)=2^{x}$. Therefore, $F(x)=f\left(2 \cdot 2^{x-1}\right)=2^{2^{x-1}}$.

$\mathbf{3}$	yes			
$\mathbf{4}$	yes		\quad	Is $g \mu$-recursive?
:---				
Is $h \mu$-recursive?				

A nowhere defined function is, of course, μ-recursive.

$\mathbf{5}$		no \quad Can every total function of type $\mathbb{N} \rightarrow \mathbb{N}$ be computed by a Turing machine?

Let $H: \mathbb{N} \rightarrow \mathbb{N}$ be the function that checks whether the input n is the code of a Turing machine. If it is not then $H(n)=2$. If it is then $H(n)$ returns 1 if the TM corresponding to n halts on the empty input and returns 0 , if that TM does not halt. Clearly, H is a total function, but if it were Turing computable, then the restricted Halting problem would be decidable.

Part 2 Grammar2017
Consider the grammar $G=(N, \Sigma, P, S)$ where $N=\{S, A\}, \Sigma=\{0,1\}, P=$ $\{S \rightarrow 0 A A, 00 A \rightarrow 10 A, A \rightarrow 0 A, A \rightarrow 0\}$.

$\mathbf{6}$		no \quad Is $L(G)$ finite?

Consider the rule $A \rightarrow 0 A$.

7	yes		Is $1000 \in L(G)$?

$S \rightarrow 0 \underline{A} A \rightarrow \underline{00 A} A \rightarrow 10 \underline{A} A \rightarrow 100 \underline{A} \rightarrow 1000$

$\mathbf{8}$		no
$\mathbf{9}$	yes	
$\mathbf{1 0}$		no

Is the grammar G context-free?
Is there a Turing maching M such that $L(M)=L(G)$?
Does for every Turing machine M^{\prime} exist a contest-sensitive grammar G^{\prime} such that $L\left(M^{\prime}\right)=L\left(G^{\prime}\right)$?
see Chomsky hierarchy

Part 3 Decidable2017
Consider the following problems. In each problem below, the input of the problem is the code $\langle M\rangle$ of a Turing machine $M=\left(Q, \Gamma, \sqcup,\{0,1\}, \delta, q_{0}, F\right)$.

Problem A: Does $L(M)$ contain the word 2017 in binary expansion?
Problem B: Does there exist a grammar G such that $L(M)=L(G)$.
Problem C: Is there a Turing machine M^{\prime} with $L\left(M^{\prime}\right) \neq L(M)$
Problem D: Does there exist some word w such that M accepts w ?

$\mathbf{1 1}$		$\mathrm{no} \quad$ Is A decidable?

Rice Theorem.

A language generated by an unrestricted grammars is recursively enumerable and vice verse. So the question actually is whether the problem "true" is (semi-)decidable. That problem is even decidable, namely by a Turing machine that always return "yes" no matter what its input is.

\section*{| 13 | yes $\quad I s ~ C ~ d e c i d a b l e ? ~$ |
| :--- | :--- | :--- |}

There are infinitely many recursively enumerable languages. Among them is certainly a language $L \neq L(M)$. Since L is recursively enumerable, there exists a Turing machine M^{\prime} with $L=L\left(M^{\prime}\right)$. So the answer to problem C is always "yes", and that is decidable.

\section*{| $\mathbf{1 4}$ | yes \quad Is D semi-decidable? |
| :--- | :--- | :--- | :--- |}

Run M (in parallel) on all words (usual trick of doing one step of the run of all instances of M and starting a new instance of M on the next word). Whenever an instance halts in an accepting state, the answer to problem D is "yes".

Let $P, P^{\prime} \subseteq\{0,1\}^{*}$ and let M be a Turing machine that for every $w \in P$ computes a word $w^{\prime} \in P^{\prime}$ and for every $w \notin P$ computes a word $w^{\prime} \notin P^{\prime}$. Assume P is decidable. Can it in general be concluded that P^{\prime} is decidable?

We have $P(w) \Longleftrightarrow P^{\prime}(f(w))$ where f is the "computable function" (that is required in Definition 42) computed by M. Thus $P \leq P^{\prime}$. We would need the "other" direction, namely $P^{\prime} \leq P$, i. e., a computable function g such that $P(g(w)) \Longleftrightarrow P^{\prime}(w)$ in order to apply Theorem 32 (lecture notes). Since nothing about such a g is known and its existance cannot be concluded from f, it cannot be concluded that P^{\prime} is decidable.

Part 4 Complexity2017
Let $f(n)=20^{n}+17^{n}, g(n)=(20+17)^{n}$, and $h(n)=n^{20}+n^{17}$.

$\mathbf{1 6}$		no
$\mathbf{1 7}$	yes	
$\mathbf{1 8}$		no
$\mathbf{1 9}$	yes	

Is it true that $f(n)=\Theta(g(n))$?
Is it true that $h(n)=O(f(n))$?
Is it true that $2^{h(n)}=O(g(n))$?
Is it true that $\frac{1}{n}=O\left(\frac{1}{10^{8}}\right)$?
Part 5 LoopWhile2017
Let P be a WHILE program that computes a total function $f: \mathbb{N} \rightarrow \mathbb{N}$ where x_{1} is the input of the program P and x_{0} its output. Let W be the following WHILE program that computes a function $g: \mathbb{N} \rightarrow \mathbb{N}$.
loop x_{1} do $P ; x_{1}:=x_{0}+1$ end;
Furthermore, let P^{\prime} and W^{\prime} be the programs that are obtained from P and W by replacing every loop by while, respectively. Let f^{\prime} and g^{\prime} the functions that are computed by P^{\prime} and W^{\prime} respectively.

Since f WHILE-computable.
Additionally assume that f is primitive recursive. Can it be concluded that g is LOOP-computable?

Since f is primitive recursive, there exists a LOOP program P_{L} that computes f. Then the program W_{L} (which is like W with P replaced by P_{L}) is a LOOP program that computes g.

If f^{\prime} is a total function, can it be concluded that there exists a LOOP program that computes f^{\prime} ?

A loop statement can always be rewritten into an equivalent while statement. Let X be a program that computes ack (x, x). Let P be as X but rewritten to contain no loop statement. Then $P^{\prime}=P$. Thus f^{\prime} is total, but not primitive recursive.
 that $g^{\prime}(m)=n$?") decidable?
(Formally: Let $b: \mathbb{N} \rightarrow\{0,1\}^{*}$ be the (Turing-computable) function that takes a natural number n as input and returns the binary representation of n. Is the set $R=\left\{b(n) \in\{0,1\}^{*} \mid n \in \operatorname{range}\left(g^{\prime}\right)\right\}$ decidable?)

Obviously W^{\prime} does not execute the body of the the outermost while if $x_{1}=0$. In that case $x_{0}=0$ is the result. In all other cases W^{\prime} does not terminate. Therefore, $R=\{0\}$ and that set is finite and thus decidable.

Part 6 OpenComputability2017
The syntax of a LOOP program is given by:

$$
P::=x_{i}=0\left|x_{i}:=x_{j}+1\right| x_{i}:=x_{j}-1|P ; P| \text { loop } x_{i} \text { do } P \text { end }
$$

Please note that the arithmetic operation allowed in a LOOP program are only $x_{i}:=x_{j}+1$ and $x_{i}:=x_{j}-1$.

$x_{0}:=x_{1}+1 ;$
$x_{0}:=x_{0}-1 ; \quad / / x_{0}:=x_{1}$
loop x_{1} do $\quad / / \sum_{x_{1} \ldots 0}$
$x_{1}:=x_{1}-1 ;$
loop x_{1} do $x_{0}:=x_{0}+1$; end;
end;

25 1 Point
Determine an asymptotic lower bound $B(n)$ for the number of of executions of commands of the form $x_{i}:=x_{j}+1$ and $x_{i}:=x_{j}-1$ for any LOOP program that computes $c(n)$. Use Ω notation.
$B(n)=\Omega(\quad)$
The result $c(n)=\frac{n(n+1)}{2}$ can only be achieved by executing at least $\Omega\left(n^{2}\right)$ times a command of the form $x_{i}:=x_{j}+1$.

