
Gruppe Hemmecke (10:15) Hemmecke (11:00) Popov

Name Matrikel SKZ

Klausur 2

Berechenbarkeit und Komplexität
12. Januar 2018

Part 1 RecFun2017
Let f, g : N→P N be two partial functions that are de�ned as follows:

f(x) =


0 if x = 0,

unde�ned if x = 1,

2f(x− 2) otherwise

g(x) =

{
x2 if x is odd,

unde�ned otherwise.

Let F (x) = f(f(2x)) and h(x) = f(x) + g(x).

1 no Is f primitive recursive?

2 yes Is F primitive recursive?

Obviously, is f de�ned for even input and has an even result in these
cases. Thus f(2x) = 2f(2(x− 1)) = · · · = 2xf(0) = 2x. Therefore,

F (x) = f(2 · 2x−1) = 22
x−1

.

3 yes Is g µ-recursive?

4 yes Is h µ-recursive?

A nowhere de�ned function is, of course, µ-recursive.

5 no Can every total function of type N→ N be computed by a Turing machine?

Let H : N→ N be the function that checks whether the input n is the
code of a Turing machine. If it is not then H(n) = 2. If it is then H(n)
returns 1 if the TM corresponding to n halts on the empty input and
returns 0, if that TM does not halt. Clearly, H is a total function, but
if it were Turing computable, then the restricted Halting problem
would be decidable.

Part 2 Grammar2017
Consider the grammar G = (N,Σ, P, S) where N = {S,A}, Σ = {0, 1}, P =
{S → 0AA, 00A→ 10A,A→ 0A,A→ 0}.

6 no Is L(G) �nite?

Consider the rule A→ 0A.

7 yes Is 1000 ∈ L(G)?

S → 0AA→ 00AA→ 10AA→ 100A→ 1000

8 no Is the grammar G context-free?

9 yes Is there a Turing maching M such that L(M) = L(G)?

10 no Does for every Turing machine M ′ exist a contest-sensitive grammar G′

such that L(M ′) = L(G′)?

see Chomsky hierarchy

Part 3 Decidable2017
Consider the following problems. In each problem below, the input of the prob-
lem is the code 〈M〉 of a Turing machine M = (Q,Γ,t, {0, 1} , δ, q0, F).

Problem A: Does L(M) contain the word 2017 in binary expansion?
Problem B: Does there exist a grammar G such that L(M) = L(G).
Problem C: Is there a Turing machine M ′ with L(M ′) 6= L(M)
Problem D: Does there exist some word w such that M accepts w?

11 no Is A decidable?

Rice Theorem.

12 yes Is B semi-decidable?

A language generated by an unrestricted grammars is recursively
enumerable and vice verse. So the question actually is whether the
problem �true� is (semi-)decidable. That problem is even decidable,
namely by a Turing machine that always return �yes� no matter what
its input is.

13 yes Is C decidable?

There are in�nitely many recursively enumerable languages. Among
them is certainly a language L 6= L(M). Since L is recursively
enumerable, there exists a Turing machine M ′ with L = L(M ′). So the
answer to problem C is always �yes�, and that is decidable.

14 yes Is D semi-decidable?

Run M (in parallel) on all words (usual trick of doing one step of the
run of all instances of M and starting a new instance of M on the next
word). Whenever an instance halts in an accepting state, the answer to
problem D is �yes�.

15 no Let P, P ′ ⊆ {0, 1}∗ and let M be a Turing machine that for every w ∈ P
computes a word w′ ∈ P ′ and for every w 6∈ P computes a word w′ 6∈ P ′.
Assume P is decidable. Can it in general be concluded that P ′ is decidable?

We have P (w) ⇐⇒ P ′(f(w)) where f is the �computable function�
(that is required in De�nition 42) computed by M . Thus P ≤ P ′. We
would need the �other� direction, namely P ′ ≤ P , i. e., a computable
function g such that P (g(w)) ⇐⇒ P ′(w) in order to apply Theorem
32 (lecture notes). Since nothing about such a g is known and its
existance cannot be concluded from f , it cannot be concluded that P ′

is decidable.

Part 4 Complexity2017

Let f(n) = 20n + 17n, g(n) = (20 + 17)n, and h(n) = n20 + n17.

16 no Is it true that f(n) = Θ(g(n))?

17 yes Is it true that h(n) = O(f(n))?

18 no Is it true that 2h(n) = O(g(n))?

19 yes Is it true that 1
n = O(1

108)?

Part 5 LoopWhile2017

Let P be a WHILE program that computes a total function f : N→ N where x1
is the input of the program P and x0 its output. Let W be the following WHILE
program that computes a function g : N→ N.

loop x 1 do P; x 1 := x 0 + 1 end ;

Furthermore, let P ′ and W ′ be the programs that are obtained from P and W
by replacing every loop by while, respectively. Let f ′ and g′ the functions that
are computed by P ′ and W ′ respectively.

20 yes Is f Turing-computable?

Since f WHILE-computable.

21 yes Additionally assume that f is primitive recursive. Can it be concluded that
g is LOOP-computable?

Since f is primitive recursive, there exists a LOOP program PL that
computes f . Then the program WL (which is like W with P replaced
by PL) is a LOOP program that computes g.

22 no If f ′ is a total function, can it be concluded that there exists a LOOP
program that computes f ′?

A loop statement can always be rewritten into an equivalent while
statement. Let X be a program that computes ack(x, x). Let P be as
X but rewritten to contain no loop statement. Then P ′ = P . Thus f ′

is total, but not primitive recursive.

23 yes Is the problem �n ∈ range(g′)� (i.e., �Does there exist some m ∈ N such
that g′(m) = n?�) decidable?
(Formally: Let b : N → {0, 1}∗ be the (Turing-computable) function that
takes a natural number n as input and returns the binary representation
of n. Is the set R =

{
b(n) ∈ {0, 1}∗

∣∣n ∈ range(g′)
}
decidable?)

Obviously W ′ does not execute the body of the the outermost while if
x1 = 0. In that case x0 = 0 is the result. In all other cases W ′ does not
terminate. Therefore, R = {0} and that set is �nite and thus decidable.

Part 6 OpenComputability2017

The syntax of a LOOP program is given by:

P ::= xi = 0 | xi := xj + 1 | xi := xj − 1 | P ;P | loop xi do P end

Please note that the arithmetic operation allowed in a LOOP program are only
xi := xj + 1 and xi := xj − 1.

24 1 Point Write a LOOP program that computes the function c(n) =
∑n

k=1 k.

x0 := x1 + 1;
x0 := x0 − 1; //x0 := x1
loop x1 do //

∑
x1...0

x1 := x1 − 1;
loop x1 do x0 := x0 + 1; end;

end;

25 1 Point Determine an asymptotic lower bound B(n) for the number of of executions
of commands of the form xi := xj + 1 and xi := xj − 1 for any LOOP
program that computes c(n). Use Ω notation.
B(n) = Ω()

The result c(n) = n(n+1)
2 can only be achieved by executing at least

Ω(n2) times a command of the form xi := xj + 1.

