Gruppe	Hemmecke	e (10:15) Hemmecke (11:00)	Popov
Name		Matrikel	SKZ
		Klausur 2	
		Berechenbarkeit und Komplexität 12. Januar 2018	
	Par Let	t 1 RecFun2017 $f, g: \mathbb{N} \to_P \mathbb{N}$ be two partial functions that are defined as follows:	
	f	$f(x) = \begin{cases} 0 & \text{if } x = 0, \\ undefined & \text{if } x = 1, \\ 2f(x-2) & \text{otherwise} \end{cases} \qquad g(x) = \begin{cases} x^2 & \text{if } x \text{ is odd,} \\ undefined & \text{otherwise.} \end{cases}$	
	Let	F(x) = f(f(2x)) and $h(x) = f(x) + g(x)$.	
1 2 ye	no s	Is f primitive recursive? Is F primitive recursive?	
		Obviously, is f defined for even input and has an even result in these cases. Thus $f(2x) = 2f(2(x-1)) = \cdots = 2^x f(0) = 2^x$. Therefore, $F(x) = f(2 \cdot 2^{x-1}) = 2^{2^{x-1}}$.	
3 ye 4 ye	s s	Is g μ -recursive? Is h μ -recursive?	
		A nowhere defined function is, of course, $\mu\text{-}\mathrm{recursive.}$	
5	no	Can every total function of type $\mathbb{N} \to \mathbb{N}$ be computed by a Turing machine	ne?
		Let $H : \mathbb{N} \to \mathbb{N}$ be the function that checks whether the input n is the code of a Turing machine. If it is not then $H(n) = 2$. If it is then $H(n)$ returns 1 if the TM corresponding to n halts on the empty input and returns 0, if that TM does not halt. Clearly, H is a total function, but if it were Turing computable, then the restricted Halting problem would be decidable.	
	Par <i>Con</i> { <i>S</i> -	et 2 Grammar2017 usider the grammar $G = (N, \Sigma, P, S)$ where $N = \{S, A\}, \Sigma = \{0, 1\}, P \rightarrow 0AA, 00A \rightarrow 10A, A \rightarrow 0A, A \rightarrow 0\}.$	=
6	no	Is $L(G)$ finite?	
		Consider the rule $A \to 0A$.	
7 ye	s	Is $1000 \in L(G)$?	
		$S \rightarrow 0\underline{A}A \rightarrow \underline{00A}A \rightarrow 10\underline{A}A \rightarrow 100\underline{A} \rightarrow 1000$	
8 9 ye 10	no s no	Is the grammar G context-free? Is there a Turing maching M such that $L(M) = L(G)$? Does for every Turing machine M' exist a contest-sensitive grammar such that $L(M') = L(G')$?	G'
		see Chomsky hierarchy	

Part 3 Decidable2017

Consider the following problems. In each problem below, the input of the problem is the code $\langle M \rangle$ of a Turing machine $M = (Q, \Gamma, \sqcup, \{0, 1\}, \delta, q_0, F)$.

Problem A: Does L(M) contain the word 2017 in binary expansion? Problem B: Does there exist a grammar G such that L(M) = L(G). Problem C: Is there a Turing machine M' with $L(M') \neq L(M)$ Problem D: Does there exist some word w such that M accepts w?

11 no	Is A decidable?
	Rice Theorem.
12 yes	Is B semi-decidable?
	A language generated by an unrestricted grammars is recursively enumerable and vice verse. So the question actually is whether the problem "true" is (semi-)decidable. That problem is even decidable, namely by a Turing machine that always return "yes" no matter what its input is.
13 yes	Is C decidable?
	There are infinitely many recursively enumerable languages. Among them is certainly a language $L \neq L(M)$. Since L is recursively enumerable, there exists a Turing machine M' with $L = L(M')$. So the answer to problem C is always "yes", and that is decidable.
14 yes	Is D semi-decidable?
	Run M (in parallel) on all words (usual trick of doing one step of the run of all instances of M and starting a new instance of M on the next word). Whenever an instance halts in an accepting state, the answer to problem D is "yes".
15 no	Let $P, P' \subseteq \{0,1\}^*$ and let M be a Turing machine that for every $w \in P$ computes a word $w' \in P'$ and for every $w \notin P$ computes a word $w' \notin P'$. Assume P is decidable. Can it in general be concluded that P' is decidable?
	We have $P(w) \iff P'(f(w))$ where f is the "computable function" (that is required in Definition 42) computed by M . Thus $P \leq P'$. We would need the "other" direction, namely $P' \leq P$, i. e., a computable function g such that $P(g(w)) \iff P'(w)$ in order to apply Theorem 32 (lecture notes). Since nothing about such a g is known and its existance cannot be concluded from f , it cannot be concluded that P' is decidable.
P L	art 4 Complexity2017 et $f(n) = 20^n + 17^n$, $g(n) = (20 + 17)^n$, and $h(n) = n^{20} + n^{17}$.
16 no	Is it true that $f(n) = \Theta(g(n))$?
17 yes	Is it true that $h(n) = O(f(n))$?
18 no	Is it true that $2^{h(n)} = O(g(n))$?

Is it true that $\frac{1}{n} = O(\frac{1}{10^8})$?

19 yes

Part 5 Loop While2017

Let P be a WHILE program that computes a total function $f : \mathbb{N} \to \mathbb{N}$ where x_1 is the input of the program P and x_0 its output. Let W be the following WHILE program that computes a function $g : \mathbb{N} \to \mathbb{N}$.

 $loop \ x_1 \ do \ P; \ x_1 \ := \ x_0 \ + \ 1 \ end;$

Furthermore, let P' and W' be the programs that are obtained from P and W by replacing every **loop** by **while**, respectively. Let f' and g' the functions that are computed by P' and W' respectively.

20 yes	Is f Turing-computable?
	Since f WHILE-computable.
21 yes	Additionally assume that f is primitive recursive. Can it be concluded that g is LOOP-computable?
	Since f is primitive recursive, there exists a LOOP program P_L that computes f. Then the program W_L (which is like W with P replaced by P_L) is a LOOP program that computes g.
22 no	If f' is a total function, can it be concluded that there exists a LOOP program that computes f' ?
	A loop statement can always be rewritten into an equivalent while statement. Let X be a program that computes $ack(x, x)$. Let P be as X but rewritten to contain no loop statement. Then $P' = P$. Thus f' is total, but not primitive recursive.
23 yes	Is the problem " $n \in \operatorname{range}(g')$ " (i.e., "Does there exist some $m \in \mathbb{N}$ such that $g'(m) = n$?") decidable? (Formally: Let $b : \mathbb{N} \to \{0,1\}^*$ be the (Turing-computable) function that takes a natural number n as input and returns the binary representation of n . Is the set $R = \{b(n) \in \{0,1\}^* \mid n \in \operatorname{range}(g')\}$ decidable?)
	Obviously W' does not execute the body of the the outermost while if $x_1 = 0$. In that case $x_0 = 0$ is the result. In all other cases W' does not terminate. Therefore, $R = \{0\}$ and that set is finite and thus decidable.
P T	art 6 OpenComputability2017 The syntax of a LOOP program is given by:
P T	art 6 OpenComputability2017 The syntax of a LOOP program is given by: $P ::= x_i = 0 \mid x_i := x_j + 1 \mid x_i := x_j - 1 \mid P; P \mid \textbf{loop } x_i \textbf{ do } P \textbf{ end}$
P T P	art 6 OpenComputability2017 The syntax of a LOOP program is given by: $P ::= x_i = 0 x_i := x_j + 1 x_i := x_j - 1 P; P \text{loop } x_i \text{ do } P \text{ end}$ The second
P T 24 1 Point	art 6 OpenComputability2017 The syntax of a LOOP program is given by: $P ::= x_i = 0 x_i := x_j + 1 x_i := x_j - 1 P; P \text{loop } x_i \text{ do } P \text{ end}$ lease note that the arithmetic operation allowed in a LOOP program are only $a_i := x_j + 1 \text{ and } x_i := x_j - 1.$ Write a LOOP program that computes the function $c(n) = \sum_{k=1}^n k.$
Р Г 24 1 Point	art 6 <u>OpenComputability2017</u> The syntax of a LOOP program is given by: $P ::= x_i = 0 x_i := x_j + 1 x_i := x_j - 1 P; P \text{loop } x_i \text{ do } P \text{ end}$ The arithmetic operation allowed in a LOOP program are only $i_i := x_j + 1 \text{ and } x_i := x_j - 1.$ Write a LOOP program that computes the function $c(n) = \sum_{k=1}^n k.$ $x_0 := x_1 + 1;$ $x_0 := x_0 - 1; //x_0 := x_1$ The loop x_1 do $x_0 := x_0 + 1;$ end; end;
P T 24 1 Point 25 1 Point	art 6 $OpenComputability2017$ The syntax of a LOOP program is given by: $P ::= x_i = 0 x_i := x_j + 1 x_i := x_j - 1 P; P \text{loop } x_i \text{ do } P \text{ end}$ lease note that the arithmetic operation allowed in a LOOP program are only $a_i := x_j + 1 \text{ and } x_i := x_j - 1.$ Write a LOOP program that computes the function $c(n) = \sum_{k=1}^n k.$ $x_0 := x_1 + 1;$ $x_0 := x_0 - 1; //x_0 := x_1$ $\log x_1 \text{ do } //\sum_{x_10} x_1 := x_1 - 1;$ $\log x_1 \text{ do } x_0 := x_0 + 1; \text{ end};$ end; Determine an asymptotic lower bound $B(n)$ for the number of of executions of commands of the form $x_i := x_j + 1$ and $x_i := x_j - 1$ for any LOOP program that computes $c(n)$. Use Ω notation. $B(n) = \Omega($
P T 24 1 Point 25 1 Point	art 6 OpenComputability2017 The syntax of a LOOP program is given by: $P ::= x_i = 0 x_i := x_j + 1 x_i := x_j - 1 P; P \text{loop } x_i \text{ do } P \text{ end}$ The syntax of a LOOP program is given by: $P ::= x_i = 0 x_i := x_j + 1 x_i := x_j - 1 P; P \text{loop } x_i \text{ do } P \text{ end}$ The syntax of a LOOP program that computes in a LOOP program are only $i_i := x_j + 1 \text{ and } x_i := x_j - 1.$ Write a LOOP program that computes the function $c(n) = \sum_{k=1}^n k.$ $x_0 := x_1 + 1;$ $x_0 := x_0 - 1; //x_0 := x_1$ $\log x_1 \text{ do } //\sum_{x_10} x_1 := x_1 - 1;$ $\log x_1 \text{ do } x_0 := x_0 + 1; \text{ end};$ end; Determine an asymptotic lower bound $B(n)$ for the number of of executions of commands of the form $x_i := x_j + 1$ and $x_i := x_j - 1$ for any LOOP program that computes $c(n)$. Use Ω notation. $B(n) = \Omega()$ The result $c(n) = \frac{n(n+1)}{2}$ can only be achieved by executing at least $\Omega(n^2)$ times a command of the form $x_i := x_j + 1.$