Problems Solved:

46	47	48	49	50

Name:

Matrikel-Nr.:

Problem 46. Let $L=\left\{0^{n} 10^{n} 10^{n} \mid n \in \mathbb{N}\right\}$.

- Describe (informally) a Turing machine M with $L(M)=L$.
- Analyse the (asymptotic) time and space complexity of M.

Problem 47. Consider the following pseudo code of an implementation of a FIFO (first in first out) queue with two functions enqueue and dequeue.

```
input := EMPTYLIST
output := EMPTYLIST
function enqueue(e, input, output) { push(e, input) }
function dequeue(input, output) {
    if isempty(output) {
        while not isempty(input) { push(pop(input), output) }
    }
    pop(output)
}
```

Analyze its amortized cost of these functions by (a) the aggregate method and (b) the potential method. Here,

- $\operatorname{push}(e, L)$ is the operation of adding an element e to the front of a list L,
- isempty (L) returns TRUE if the list L is empty,
- $\operatorname{pop}(\mathrm{L})$ is the operation that removes the first element of a list L and returns it.

All these operations are assumed to cost constant time.
In the code above, a queue is represented by a pair (input, output). Putting a new element into the queue via enqueue, first puts it to the front of input. Only when an element is requested via a call to dequeue, elements are moved from input to output list, thus effectively reversing input so that in total the queue returns its elements in a FIFO principle.
Hint: For the potential method you might want to consider the function Φ such that for a queue q that is represented by the pair (input, output) of two lists, $\Phi(q)$ is the size of the input list.

Problem 48. Consider the program

```
f(n) ==
    return g(n, 0, 0,0)
g(n, m, v, s) ==
    if m > n then
        return s
    else
        return g(n, m + 1, 2* (v + (2* m + 1) * 2^m), s + v)
```

which computes a function $f: \mathbb{N} \rightarrow \mathbb{N}$.

1. Show that

$$
v=2^{m} m^{2}
$$

holds for every call $g(n, m, v, s)$ to function g in the execution of $f(n)$. Hint: Use induction on the number of (nested) function calls to g.
2. Show that

$$
s=\sum_{k=0}^{m-1} k^{2} 2^{k}
$$

holds for every call $g(n, m, v, s)$ in the execution of $f(n)$.
Hint: Again, use induction on the number of calls to g. In the induction step, you may want to use the result of Part 1.
3. From Part 2, one may deduce $f(n)=\sum_{k=0}^{m} k^{2} 2^{k}$. Show by induction on n that $f(n)=2^{n+1}\left(3-2 n+n^{2}\right)-6$.

Problem 49. Consider a RAM program that evaluates the value of $\sum_{i=1}^{n} i^{2}$ in the naive way (by iteration). Analyze the worst-case asymptotic time and space complexity of this program assuming the existence of operations ADD r and MUL r for the addition and multiplication of the accumulator with the content of register r.

1. Determine a Θ-expression for the number $S(n)$ of registers used in the program with input n (space complexity).
2. Compute a Θ-expression for the number $T(n)$ of instructions executed for input n (time complexity in constant cost model),
3. Assume a simplified version of the logarithmic cost model of a RAM where the cost of every operaton is proportional to the length of the arguments involved. In particular, if a is the (bit) length of the accumulator and l is the (bit) length of the content of register r then MUL $\mathrm{r} \operatorname{costs} a+l$ and ADD r costs $\max (a, l)$.
Compute the asymptotic costs $C(n)$ (using O-notation) of the program for input n.

Problem 50. Consider the following program as an informal sketch of an underlying RAM program which is to be analyzed in the logarithmic cost model. Analyze the time and space complexity:

```
n = read()
p = 1
while n > 0
    p = 2 * p
    n = n - 1
q = 1
while p > 0
    q = 2*q
    p = p - 1
write(q)
```

Specify the asymptotic time and space complexity of the program depending on the input N by Θ-notation.

