Formal Methods in Software Development Sample Exam

Wolfgang Schreiner
Wolfgang.Schreiner@risc.jku.at

January 9, 2018

Last Name:

First Name:

Matrikelnummer:

Studienkennzahl:

KV3 (questions 1-4): 85 points total.
KV4 (questions 1-5): 100 points total

1. (30 points)
a) (15 points) Write a RISCAL specification (pre/post-condition) of a procedure
```
val N:Nat; theorem nonZero <=> N > 0;
```

type int $=\operatorname{Int}[-N, N] ;$ type array $=\operatorname{Array}[\mathrm{N}$, int $]$;
proc fill(a:array, p:int, n:int, e:int): array \{ ... \}
which returns a copy of a where, starting from position p, n elements have been set to e; do not forget to specify suitable preconditions for p and n that restrict their range to reasonable limits.
If you prefer, you may also write the specification in the syntax of the RISC ProgramExplorer for a corresponding static Java method.
b) (15 points) Write a heavy-weight JML specification for the following method of the Java library (the specification shall be as expressive as possible).

```
public static void fill(int[] a, int fromIndex, int toIndex, int val)
```

Assigns the specified int value to each element of the specified range of the specified array of ints. The range to be filled extends from index fromIndex, inclusive, to index toIndex, exclusive. (If fromIndex==toIndex, the range to be filled is empty.)

Parameters:

a - the array to be filled
fromIndex - the index of the first element (inclusive) to be filled with the specified value
toIndex - the index of the last element (exclusive) to be filled with the specified value
val - the value to be stored in all elements of the array
Throws:
IllegalArgumentException - if fromIndex > toIndex
ArrayIndexOutOfBoundsException - if fromIndex $<\mathbb{Q}$ or toIndex $>$ a.length
2. (15 points) First, derive the strongest postcondition of the command c

```
if (i < 10)
{
    a[i] = a[i]+3;
    i = i+1;
}
```

for precondition $a[2]=5$ (ignoring 'index out ouf bound" violations). Simplify the derived postcondition as far as possible.
Second, derive a judgement of form $c:[F]^{x, \ldots}$ for some state transition F and variable frame $\{x, \ldots\}$.

Remember that $a[i]:=b$ is here just an abbreviation of $a:=a[i \mapsto b]$.
3. (20 points) Take the following program which is supposed to compute for given $n \in \mathbb{N}$ the result $s:=n^{2}$:

```
{n=oldn}
    s = 0; i = 1;
    while (i <= n)
    {
        s = s+2*i-1;
        i = i+1;
    }
{s=\mp@subsup{n}{}{2}\wedgen=oldn}
```

a) (10P) Assume you are given a suitable loop invariant I and termination term T; using I and T state all verification conditions (classical logic formulas) that have to be proved for verifying partial correctness and termination of the program (writing $I[t / x]$ for a substitution of term t for variable x in I and analogously for T).
b) (10P) Construct for input $n=10$ a table for the values of the variables before/after each loop iteration. Using this table as a hint, give suitable definitions for I and T and perform the verification (check the conditions and indicate clearly whether/why they hold).
4. (20 points) Take the following asynchronous composition of two processes operating on shared variables x, y, i, j :

```
initially x = y = i = 0, j = 1
loop || loop
    P1: x = x+j; || Q1: wait i > 0;
    P2: i = 1-i; || Q2: y = y+i;
    || Q3: j = 1-j;
```

a) (8 points) Give a formal model of the system (using the interleaving assumption for asynchronous composition) as a "labeled" transition system including the state space definition (use as labels the same values as the program counters).
b) (6 points) Formalize in LTL the properties

- " i becomes greater than zero before y becomes greater than zero (which is eventually the case)"
- "if at any time i becomes greater than zero, then eventually also y will become greater than zero".
c) (6 points) Is the second property true for above system? If yes, explain why. If not, show an execution trace that violates the property.

In the second case, does the property become true, if we assume weak fairness for all transitions? Does it become true, if we assume strong fairness for all transitions? Explain your answers.
5. (15 Points)

Derive the performance measures of an $\mathrm{M} / \mathrm{M} / 1$ system (justify your answers).

