Problems Solved:

| 41 | 42 | 43 | 44 | 45

Name:

Matrikel-Nr.:

Problem 41. Let T(n) be total number of calls to tick() resulting from running P(n).

```
procedure P(n)
    k = 0
    while k < n do
        tick()
        P(k)
        k = k + 1
    end while</pre>
```

end procedure

- 1. Compute T(0), T(1), T(2), T(3), T(4).
- 2. Give a recurrence relation for T(n). (It is OK if your recurrence involves a sum.)
- 3. Give a recurrence relation for T(n) that does not involve a sum. (*Hint:* Use your recurrence relation (twice) in T(n+1) T(n).)
- 4. Solve your recurrence relation. (It is OK to just guess the solution as long as you prove that it satisfies the recurrence.)

Problem 42. Let T(n) be given by the recurrence relation

 $T(n) = 3T(\lfloor n/2 \rfloor).$

and the initial value T(1) = 1. Show that $T(n) = O(n^{\alpha})$ with $\alpha = \log_2(3)$. Hint: Define $P(n) : \iff T(n) \le n^{\alpha}$. Show that P(n) holds for all $n \ge 1$ by induction on n. It is not necessary to restrict your attention to powers of two.

Problem 43. Let T(n) be number of times that line 2 is executed in the worst case while running P(a, b) where n := b - a.

```
1 procedure P(int a, int b, int foo[])
2 if (a + 1 < b) {
3 int h = floor( (a + b) / 2);
4 if foo[h] >= 0 then P(a, h)
5 if foo[h] <= 0 then P(h, b)
6 }</pre>
```

```
7 end procedure
```

- 1. Compute T(1), T(2), T(3) and T(4).
- 2. Give a recurrence relation for T(n).
- 3. Solve your recurrence relation for T(n) in the special case where $n = 2^m$ is a power of two.

Berechenbarkeit und Komplexität, WS2017

4. Use the Master Theorem to determine asymptotic bounds for T(n).

Note that **floor** denotes the function that returns the biggest integer value that is smaller than or equal to the argument.

Problem 44. Let X be a monoid. Device an "algorithm" (as recursive/iterative pseudo-code in the style of Chapter 6 of the lecture notes) for the computation of x^n for $x \in X, n \in \mathbb{N}$ that uses less multiplications than the naive algorithm of n times multiplying x to the result obtained so far. Determine the complexity as M(n), i.e., the number of multiplications of your "algorithm" depending on the exponent n.

Hint: Note that x^8 can be computed with just 3 multiplications while the naive algorithm would use 7 multiplications. Based on this observation, the algorithm can be based on a kind of "binary powering" strategy.

Problem 45. Let M be a Turing machine over the alphabet $\{0, 1\}$ that takes as input a string $b_1b_2 \ldots b_n$ ($b_i \in \{0, 1\}$), prepends an additional 1 to the string and then interprets the result $1b_1b_2 \ldots b_n$ as the binary representation of a number k. M then writes out the unary representation of k (consisting of a string of k letters 1) onto the tape and stops.

Note that in the above description it is not said how M computes the result. In particular M need not be the most efficient Turing machine fulfilling the above specification.

- 1. Give a reasonably close asymptotic lower-bound for the space- and timecomplexity S(n) and T(n) for the execution of the task and justify these bounds (without giving a detailed construction of M). Choose adequate Landau-symbols for formulating the bounds.
- 2. Give an informal description of a (reasonably efficient) Turing machine M' that performs the task described above. Analyze the space and time complexity S(n) and T(n) and write down an upper/exact asymptotic bound for these complexities. Again choose adequate Landau symbols for formulating the bounds.

Hint: Let M' apply the binary powering strategy.

Berechenbarkeit und Komplexität, WS2017