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Introduction to Markov Chains

Definition

A stochastic process X (n)n∈N0
is called a Markov Chain with discrete time

if for all i, j, i0, ..., in−1 ∈ E

P[X (n + 1) = j |X (n) = i ,X (n − 1) = in−1, ...,X (0) = i0]

= P[X (n + 1) = j |X (n) = i ]

where E is the state space of the process X (n)n∈N0
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Introduction to Markov Chains

Definition

The expression

P[X (n + 1) = j |X (n) = i ] = pij(n)

with 0 ≤ pij(n) ≤ 1 is called the transition probability from i to j at time n

Definition

The matrix containing the transition probabilities

P = (pij)i ,j∈E =

p11 p12 ...
p21 p22 ...
... ... ...

 (1)

is called the transition matrix.
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Introduction to Markov Chains

Definition

The expression
P[X (n) = i ] = πi (n), i ∈ E , n ∈ N0

is called state probability of i∈E at time n.

Definition

A Markov Chain with discrete time has a stationary distribution πi , i ∈ E if
and only if

limn→∞πi (n) = πi
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Example 1

Given a discrete Markov Chain with

E = 0, 1

p11 = P[X (n + 1) = 0|X (n) = 0] =
1

2

p12 = P[X (n + 1) = 0|X (n) = 1] =
1

2

p21 = P[X (n + 1) = 1|X (n) = 0] =
2

5

p22 = P[X (n + 1) = 1|X (n) = 1] =
3

5

or written as a matrix

P = (pij)i ,j∈E =

(
1
2

1
2

2
5

3
5

)
(2)
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Example 1

The model as state transition diagram
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Example1

Computation of the stationary distribution according to theorems for
discrete Markov Chains. Solving

π = πP∑
i∈E

πi = 1

yields π0 = 4
9 = 0.4444̇ and π1 = 5

9 = 0.5555̇
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Example 1

According model in PRISM

dtmc

module example1

s . [0..1] init 0;

[ ] s=0 → 0.5 : (s’=0) + 0.5 : (s’=1);
[ ] s=1 → 0.6 : (s’=1) + 0.4 : (s’=0);

endmodule
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Explanation of the code

dtmc

describes the type of model we are using

s . [0..1] init 0

initialization of the states

[ ] s=0 → 0.5 : (s’=0) + 0.5 : (s’=1);
[ ] s=1 → 0.6 : (s’=1) + 0.4 : (s’=0);

defining the transition probabilities
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Example 1

Steady state probabilities according to PRISM
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Example 2

Given a discrete Markov Chain with according state transition diagram
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Example 2

According matrix with transition probabilities

P = (pij)i ,j∈E =



0 1
2

1
2 0 0 0 0 0 0 0 0 0 0

0 0 0 1
2

1
2 0 0 0 0 0 0 0 0

0 0 0 0 0 1
2

1
2 0 0 0 0 0 0

0 1
2 0 0 0 0 0 1

2 0 0 0 0 0
0 0 0 0 0 0 0 0 1

2
1
2 0 0 0

0 0 0 0 0 0 0 0 0 0 1
2

1
2 0

0 0 1
2 0 0 0 0 0 0 0 0 0 1

2
0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 1



(3)
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Example 2

According model in PRISM

dtmc

module die

s . [0..7] init 0;
d . [0..6] init 0;

[ ] s=0 → 0.5 : (s’=1) + 0.5 : (s’=2);
[ ] s=1 → 0.5 : (s’=3) + 0.5 : (s’=4);
[ ] s=2 → 0.5 : (s’=5) + 0.5 : (s’=6);
[ ] s=3 → 0.5 : (s’=1) + 0.5 : (s’=7) & (d’=1);
[ ] s=4 → 0.5 : (s’=7) & (d’=2) + 0.5 : (s’=7) & (d’=3);
[ ] s=5 → 0.5 : (s’=7) & (d’=4) + 0.5 : (s’=7) & (d’=5);
[ ] s=6 → 0.5 : (s’=2) + 0.5 : (s’=7) & (d’=6);
[ ] s=7 → (s’=7)

endmodule
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Example 2

We can check properties of the model using the following code:

P =?[F s = 7&d = x ]
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Properties

Our model can be analysed by using properties.

The expression
P =?[F s = 7&d = x ]

gives back the probability that at some point we get into state 7 with a
dice roll given by the user.

If we define an explicit value for ?

P > 0.5[F s = 7&d = x ]

we get a boolean value indicating if the given condition is true.
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Properties

The F in
P =?[F s = 7&d = x ]

determines the path property as eventually.

It is also possible to define other path properties

X: next

U: until

F: eventually

G: always

W: weak until

R: release
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Properties

It is also possible to compute long time probabilities via steady state
operator S

The expression
S =?[s = 7&d = x ]

gives back the steady state probability of state 7 with a dice roll given by
the user.
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Herman’s self stabilising algorithm

The last example is about Herman*s self stabilising algorithm. This
algorithm contains a network of processes which will return to a ”legal”
state if they start in an ”illegal” state in finite time without outside
intervention. The legal states are also called stable states.

In the following example a state is stable if there is only one process that
has the same value than the process on its left.
Example:
0 1 0 0 1 0 1 is stable
0 1 1 1 0 1 0 is not stable
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Herman’s self stabilising algorithm

According model in PRISM

dtmc

module process1

x . [0..1] init 1;

[step] (x1=x7) → 0.5 : (x1’=0) + 0.5 : (x1’=1);
[step] !(x1=x7) → (x1’=x7)

endmodule

module process2 = process1[x1=x2, x7=x1] endmodule
module process3 = process1[x1=x3, x7=x2] endmodule
module process4 = process1[x1=x4, x7=x3] endmodule
module process5 = process1[x1=x5, x7=x4] endmodule
module process6 = process1[x1=x6, x7=x5] endmodule
module process7 = process1[x1=x7, x7=x6] endmodule

//formula, for use in properties: number of tokens
//(i.e. number of processes that have the same value as the process to their left)
formula num tokens = (x1=x2?1:0)+(x2=x3?1:0)+(x3=x4?1:0)+(x4=x5?1:0)+(x5=x6?1:0)+(x6=x7?1:0)+(x7=x1?1:0);

//rewards (tocalculate expecte number of steps)
rewards ”steps”

true : 1
endrewards
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Herman’s self stabilising algorithm

The expression [step] in

[step] (x1=x7) → 0.5 : (x1’=0) + 0.5 : (x1’=1);
[step] (x1=x7) → (x1’=x7)

is responsible for a simultaneous execution of the two statements.

The expression formula in

formula num tokens = (x1=x2?1:0)+(x2=x3?1:0)+(x3=x4?1:0)+(x4=x5?1:0)+(x5=x6?1:0)+(x6=x7?1:0)+(x7=x1?1:0);

is used to increase the reusability of certain expressions.

The expression

(x1=x2?1:0)

yields 1 if x1=x2 else 0
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Herman’s self stabilising algorithm

For Properties with a undefined variable x we can define experiments witch
create multiple instances of a model. The property

P >= 1[F num tokens = 1]

indicates the model reaches a stable state starting with 7 tokens (all
processes are 1).

We now adjust our problem to allow stable states with user given amounts
of start tokens.

filter(max ,R =?[F num tokens = 1], num tokens = k)
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Herman’s self stabilising algorithm

As a result for our experiment we get the following graph
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Definition

We call cij the reward(or cost) of a transition from i ∈ E to j ∈ E.

The expression

rewards ”steps”
true : 1

endrewards

describes the reward for our model.

PRISM can handle these rewards via the reward-operator R.
The expression

R =?[F num tokens = 1]

gives back the steps needed until a stable state is reached
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Thank you for your attention
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