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Introduction to Markov Chains

Definition

A stochastic process X(n),cy, is called a Markov Chain with discrete time
if for all i, j, iy, ..., in—1 € E

PIX(n+1) = jIX(n) = i, X(n — 1) = in_1, ..., X(0) = iq]
=P[X(n+1) = j|X(n) =]

where E is the state space of the process X(n),cy,
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Introduction to Markov Chains

Definition
The expression

PX(n +1) = j|IX(n) = i] = pyj(n)

with 0 < p;i(n) < 1 is called the transition probability from i to j at time n

Definition

The matrix containing the transition probabilities

pi1 p12 ...
P:(Pij)i,jeEZ P21 P22 ... (1)

is called the transition matrix.
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Introduction to Markov Chains

Definition
The expression
P[X(n) = i] = mi(n),i € E,n € Ny

is called state probability of i€E at time n.

Definition
A Markov Chain with discrete time has a stationary distribution 7;,i € E if
and only if

Iim,,_>oo7r,-(n) = T
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Example 1

Given a discrete Markov Chain with
E=0,1
p11 =P[X(n+1) =0|X(n) =0] =
pr2 =P[X(n+1)=0|X(n) =1] =
pa1 =P[X(n+1) =1|X(n) =0] =

p2 =P[X(n+1)=1|X(n)=1] =

CIlWOIINN =N =

or written as a matrix

11
P=(pjijee =3 3
5 5
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Example 1

The model as state transition diagram

12
(L) O
205
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Examplel

Computation of the stationary distribution according to theorems for
discrete Markov Chains. Solving

m=mP
St
icE

yields mg = g = 0.4444 and m; = g = 0.5555
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Example 1

According model in PRISM

dtmc
module examplel
s . [0..1] init O;

[]s=0—0.5: (s=0) + 0.5: (s'=1);
[]s=1—06: (s=1) + 0.4 : (s=0);

endmodule
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Explanation of the code

dtmc |

describes the type of model we are using

s. [0..1] init O )

initialization of the states

[]s=0—05: (s=0) + 0.5: (s'=1);
[]s=1—06: (s=1) 4+ 0.4 : (s=0); J

defining the transition probabilities
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Example 1

Steady state probabilities according to PRISM

Starting iterations...

Steady state detected at iteration &

Iterative method: & iterations in 0.00 seconds (average 0.000000, setup 0.00)
Printing transient probkabilities in plain text format below:
O:{0)=0.4444444500000001

1:(1)=0.5555555500000001

Time for transient probability computation: 0.0 seconds.
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Example 2

Given a discrete Markov Chain with according state transition diagram
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Example 2

According matrix with transition probabilities
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Example 2

According model in PRISM

dtmc

module die

s . [0..7] init O;
d . [0..6] init O;

[]s=0—0.5:
[]s=1—0.5:
[]s=2—05:
[]s=3—05:
[]s=4 — 05 :
[]s=5—05:
[]s=6 — 0.5:
[]

(s'=1) +05: (s
(s'=3) + 0.5: (s'=
(s'=5) +05: (s
(s'=1) +05: (s
(s'=7) & (d'=2
(s'=7) & (d'=4
(s'=2) + 0.5 : (s'=7) & (d'=6);

s=7 — (s'=T7)

endmodule
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Example 2

We can check properties of the model using the following code:
P =?[F s = 7&d = x]

" Property Details *

Property:
P=7 [ F s=T&d=x ]

Defined constants:
*=1

Method:
Verification

Result (probability):
0.16666650772094727 (value in the initial state)
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Properties

Our model can be analysed by using properties.

The expression
P =?[F s = 7&d = x]

gives back the probability that at some point we get into state 7 with a
dice roll given by the user.

If we define an explicit value for ?

P> 05[F s = 7&d = ]

we get a boolean value indicating if the given condition is true.
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Properties

The F in
P =?[F s =7&d = x]

determines the path property as eventually.

It is also possible to define other path properties
e X: next
o U: until
o F: eventually
o G: always
o W: weak until

@ R: release
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Properties

It is also possible to compute long time probabilities via steady state
operator S

The expression
S =?s=7&d = x|

gives back the steady state probability of state 7 with a dice roll given by
the user.
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Herman's self stabilising algorithm

The last example is about Herman*s self stabilising algorithm. This
algorithm contains a network of processes which will return to a "legal”
state if they start in an "illegal” state in finite time without outside
intervention. The legal states are also called stable states.

In the following example a state is stable if there is only one process that
has the same value than the process on its left.

Example:

0100101isstable

0111010 is not stable
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Herman's self stabilising algorithm

According model in PRISM

dtmc
module processl

x . [0..1] init 1;

[step] (x1=x7) — 0.5 : (x1'=0) + 0.5 : (x1'=1);
[step] !(x1=x7) — (x1'=x7)

endmodule

module process2 = processl[x1=x2,

module process3
module process4
module process5
module process6
module process7

formula, for use in properties

process1[x1=x3,
processl[x1=x4,
process1[x1=x5,
process1[x1=x6,
process1[x1=x7,

x7=x1] endmodule
x7=x2] endmodule
x7=x3] endmodule
x7=x4] endmodule
x7=x5] endmodule
x7=x6] endmodule

number of tokens

(i.e. number of processes that have the same value as the process to their left)

formula num_tokens = (x1=x2?71:0)+(x2=x3?1:0)+(x3=x471:0)+(x4=x571:0)+(x5=x671:0)+(x6=x7?1:0)+(x7=x171:0);

rewards (tocalculate expecte number of steps)

rewards "steps”
true : 1
endrewards
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Herman's self stabilising algorithm

The expression [step] in

[step] (x1=x7) — 0.5 : (x1'=0) + 0.5 : (x1'=1);
[step] (x1=x7) — (x1'=x7) J

is responsible for a simultaneous execution of the two statements.

The expression formula in

formula num_tokens = (x1=x271:0)+4(x2=x371:0)+(x3=x471:0)+(x4=x571:0)+(x5=x671:0)+(x6=x771:0)+(x7=x171:0); )

is used to increase the reusability of certain expressions.

The expression

(x1=x271:0) l

yields 1 if x1=x2 else 0
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Herman's self stabilising algorithm

For Properties with a undefined variable x we can define experiments witch
create multiple instances of a model. The property

P >= 1[F num_tokens = 1]

indicates the model reaches a stable state starting with 7 tokens (all
processes are 1).

We now adjust our problem to allow stable states with user given amounts
of start tokens.

filter(max, R =?[F num_tokens = 1|, num_tokens = k)
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Herman's self stabilising algorithm

As a result for our experiment we get the following graph

Graph 1

7

G

Result

:

10 15 20 25 30 35 40 45 50 55 60 65 7.0
K
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Definition
We call ¢j; the reward(or cost) of a transition from i € E to j € E.

The expression

rewards " steps”
true : 1
endrewards

describes the reward for our model.

PRISM can handle these rewards via the reward-operator R.

The expression
R =?[F num_tokens = 1]

gives back the steps needed until a stable state is reached

Andreas Plank PRISM for Discrete Time Markov Chains December 7, 2017 24 / 26



References

@ http://www.prismmodelchecker.org/tutorial /
@ http://www.prismmodelchecker.org/manual

o [KNP10c| Marta Kwiatkowska, Gethin Norman and David Parker.
Advances and Challenges of Probabilistic Model Checking. In Proc.
48th Annual Allerton Conference on Communication, Control and
Computing, pages 1691-1698, IEEE Press. Invited paper. October
2010. http://www.prismmodelchecker.org/papers/allerton10.pdf

e [KNP11] Marta Kwiatkowska, Gethin Norman and David Parker.
PRISM 4.0: Verification of Probabilistic Real-time Systems. In Proc.
23rd International Conference on Computer Aided Verification
(CAV'11), volume 6806 of LNCS, pages 585-591, Springer. July 2011.
http://www.prismmodelchecker.org/papers/cavll.pdf

@ Lecture Markov Chains by Assoz. Univ.-Prof Dr. Dmitry Efrosinin
http://www.jku.at/stochastik/content/e140956 /e199111

Andreas Plank PRISM for Discrete Time Markov Chains December 7, 2017 25/ 26



Thank you for your attention
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