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Introduction

● A model checker is a program that decides if a set of given 
properties hold in every state of a model

● A model could be anything. It could be a simple FSM or an 
electronic circuit

● A property is usually described with a set of logical operators 
and variables. Every property has a truth value

● There are also different languages for describing properties. 
A few examples:
– CTL

– LTL

– PCTL
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Computational Tree Logic

● Computational Tree Logic(CTL) has all operators from 
predicate logic plus two quantifiers and a few temporal 
operators. It operates on paths

● A path or trace is a sequence of states, representing a 
execution of a model

● Additional Quantifiers:
–     :    has to hold in all subsequent paths

–     : there exists one or more paths where   holds
● Temporal Operators:

– Next (X)

– Globally(G) and Finally(F)

– Until(U) and Weak Until(W)

Aϕ ϕ

Eϕ ϕ
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Example for a model(Kripke Structure):

Example properties in CTL:

● (AX Accept)(S0)  False→
● (EF Failed)(S1)  True→
● (AG Pending)(S2)  False→
● (A (Accept U Failed))(S1)  True →
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Stochastic Model Checking

● Stochastic model checking is a part of probabilistic model 
checking, meaning that the model has probabilistic 
behaviour

● In addition to check if a model satisfies some properties, it 
also can determine the likelihood of reaching a specific 
state

● Examples for model types, where we can describe 
probabilistic behaviour:
– Discrete-time Markov chains

– Continuous-time Markov chains
● Furthermore, the property language has to be

probabilistic as well
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Continuous-time Markov 
chain

● Continuous-time Markov chains(ctmc) are essentially Kripke 
structures with transition firing rates

● Example from before:



  9/33

● A firing rate determines how often per time interval t(e.g. 
seconds) the transition is made

● The probability of a transition to be triggered is 
where R(s, s') is the rate

● E.g. R(S0, S1) in our example was 20. The probability of this 
transition to be triggered within one second is therefore

● If there is more than one transition with R(s, s') > 0
 → the next state is decided by a race condition

● This means that the first transition that is triggered 
determines the next state
 

1−e−R (s,s')∗t

1−e−20



  10/33

CTMC and Probabilities

● We can also calculate the probabilities of the next states, 
producing another DTMC

● The total rate or exit rate E(s) of a state is the sum of all 
transition rates

● The probability of a transition is then
● Example from before: 

R(s,s ')
E(s)
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Continuous Stochastic 
Logic

● Continuous Stochastic Logic(CSL) is an extension of CTL 
● Removed:

– All temporal logic operators(Global, Finally, etc.) 
except Next(X)

– Quantifiers
● Added:

– Two probabilistic operators  see → next slide

– Time-bounded Until(e.g. a U[0.3, 1.5] b)

– All other temporal logic operators can be derived

from the bounded until and are consequently also

time-bounded
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Transient-State and 
Steady-State Behaviour

● To understand the two probabilistic operators, we first have 
to cover transient-state and steady-state behaviour

● Transient-state behaviour:
– Behaviour/State at instant t

– E.g. (F[10, 10] Accept)  → t = 10

– Probability-Operator P: P>0.8(F
[10, 10] Accept)

– Can be used for bounds too: P>0.8(F
[0, 10] Accept)

● Steady-state behaviour:
– Behaviour/State at t  ∞→
– Steady-state operator S: S<0.2(Accept)
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Example from before:

Example properties in CSL:
● (P>0.3( S0  ∨ Pending U[0, 0.2] Failed))  true→
● (P>0.8( S0  ∨ Pending U[0, 0.2] Failed))  false→
● (S>0.99(Failed))  true→
● (P<0.8(F

[0, 0.1] Failed))  true→

How do we know this?  → PRISM
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PRISM

● PRISM is a free open-source probabilistic model checker 
released under GPL

● Current version is 4.4
● Besides checking, it is also a tool to describe models and 

properties(with GUI)
● Additionally, it is capable of simulating models using a 

discrete-event simulation engine
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A Quick Introduction to 
Syntax

● Models are described using the PRISM Language
● There are several types of models:

 Markov decision processes(mdp)
 discrete-time Markov chains(dtmc)
 continuous-time Markov chains(ctmc)
 probabilistic timed automata(pta)

● Properties are defined in the PRISM Property 
Specification Language
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PRISM Language

● A model in PRISM consists of modules
● Each module has variables and commands
● Variables can have a standard data type, as seen in many 

other programming languages(int, bool and double) but 
may have to be bounded

● Commands are comprised of guards and updates
● A guard is a condition of the local variables when the update 

should be executed
● An update is a transition function
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Example from the PRISM manual:

 ← Modules

 ← Variables

 ← Commands

mdp

module M1

x : [0..2] init 0;

[] x=0 -> 0.8:(x'=0) + 0.2:(x'=1);
[] x=1 & y!=2 -> (x'=2);
[] x=2 -> 0.5:(x'=2) + 0.5:(x'=0);

endmodule

module M2

y : [0..2] init 0;

[] y=0 -> 0.8:(y'=0) + 0.2:(y'=1);
[] y=1 & x!=2 -> (y'=2);
[] y=2 -> 0.5:(y'=2) + 0.5:(y'=0);

endmodule
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● Modules are executed in parallel
● The scheduling is depending on the model type:

● mdp: non-deterministic
● dtmc: probabilistic
● ctmc: race condition

● Race condition:
● The first transition to trigger determines the next state
● Exponentially distributed
● Consider two rates R1=20 and R2=30. Distributions:

1−e−R (s,s ')∗t



  20/33

Rewards

● Rewards are a way to get additional information about the 
model

● An example would be “the average path time” of the model:

● Here we assign a reward of 1 to each state where the

condition holds. In this case every state
● We can later accumulate the rewards

rewards “steps”
true : 1;

endrewards
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Labels

● Labels are a way of identifying a set of states by names 
instead of numbers or conditions

● Pending, Accept, Failed from our ctmc are examples for 
such labels

● We could define them in the following way:

label "accept" = s=1 | s=2;
label "pending" = s=2;
label "failed" = s=3;



  22/33

PRISM Property 
Specification Language

● Combines the syntax of several logics(CTL, LTL, PCTL, CSL, 
etc.)

● Furthermore, it is possible to define properties about 
rewards

● The syntax is generally very similar to the definitions we 
already saw. E.g.:

● We can also let PRISM calculate actual probabilities

instead of boolean value. E.g.:

● In a sentence: What is the probability that the

program does not fail the first ten seconds?

P<0.1[G[0,10] !”failed”]

P=?[G[0,10] !”failed”]
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Verification and 
Simulation

● We can calculate the truth value or probabilities of our 
models either through verification or simulation

● Both methods will be covered in more detail in the next 
presentation

● Verification is using one of four computation engines:
– Sparse(small models)

– Explicit(even smaller models)

– MTBDD(often used in MDP)

– Hybrid(combination of explicit and symbolic)
● Simulation is using PRISM's discrete-event simulation

engine
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Running Example

● Remember our example from before?

● We will now write a model in PRISM and query our

previous properties + the average path length



  26/33

Example in PRISM:

ctmc

module running_example

s : [0..3] init 0;

[] s=0 -> 60:(s'=0) + 20:(s'=1) + 30:(s'=2);
[] s=1 -> 100:(s'=1) + 10:(s'=3);
[] s=2 -> 50:(s'=3);

endmodule

rewards "steps"
true : 1;

endrewards

label "accept" = s=1 | s=2;
label "pending" = s=2;
label "failed" = s=3;
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Properties:

● (P>0.3( S0  ∨ Pending U[0, 0.2] Failed))
● (P>0.8( S0  ∨ Pending U[0, 0.2] Failed))
● (S>0.99(Failed))
● (P<0.8(F

[0, 0.1] Failed))

Properties in PRISM Property Specification Language:

● P>0.3[s=0 | "pending" U[0, 0.2] "failed"]
● P>0.8[s=0 | "pending" U[0, 0.2] "failed"]
● S>0.99 ["failed"]
● P<0.8[F[0, 0.1] "failed"]

Average path time:

● R=?[F “failed”]
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Working with properties

● Sample paths can be created in the simulator
● A path can be chosen automatically or be created manually
● Properties are created using the Property Editor
● They can be either verified by calculation or simulation
● Changing the property epsilon in the properties, the 

precision of the simulation can be changed
● Changing the number of samples, precision can be

increased
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Circadian Clock Example
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Summary

● Stochastic Model Checking is used to analyse models with 
probabilistic behaviour

● Continuous-time Markov chains are models with probabilistic 
behaviour

● PRISM provides a language to describe CTMC
● We can simulate our model and create traces/paths
● We can also query a CTMC with the PRISM Property 

Specification Language, similar to CSL
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Questions?
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