
 1/33

PRISM and CTMC

Mario Binder
WS 2017/2018

 2/33

Outline

● Introduction
● CTMC
● PRISM
● PRISM and CTMC
● Summary

 3/33

Introduction

● A model checker is a program that decides if a set of given
properties hold in every state of a model

● A model could be anything. It could be a simple FSM or an
electronic circuit

● A property is usually described with a set of logical operators
and variables. Every property has a truth value

● There are also different languages for describing properties.
A few examples:
– CTL

– LTL

– PCTL

 4/33

Computational Tree Logic

● Computational Tree Logic(CTL) has all operators from
predicate logic plus two quantifiers and a few temporal
operators. It operates on paths

● A path or trace is a sequence of states, representing a
execution of a model

● Additional Quantifiers:
– : has to hold in all subsequent paths

– : there exists one or more paths where holds
● Temporal Operators:

– Next (X)

– Globally(G) and Finally(F)

– Until(U) and Weak Until(W)

Aϕ ϕ

Eϕ ϕ

 5/33

Example for a model(Kripke Structure):

Example properties in CTL:

● (AX Accept)(S0) False→
● (EF Failed)(S1) True→
● (AG Pending)(S2) False→
● (A (Accept U Failed))(S1) True →

 6/33

Stochastic Model Checking

● Stochastic model checking is a part of probabilistic model
checking, meaning that the model has probabilistic
behaviour

● In addition to check if a model satisfies some properties, it
also can determine the likelihood of reaching a specific
state

● Examples for model types, where we can describe
probabilistic behaviour:
– Discrete-time Markov chains

– Continuous-time Markov chains
● Furthermore, the property language has to be

probabilistic as well

 7/33

Outline

● Introduction
● CTMC
● PRISM
● PRISM and CTMC
● Summary

 8/33

Continuous-time Markov
chain

● Continuous-time Markov chains(ctmc) are essentially Kripke
structures with transition firing rates

● Example from before:

 9/33

● A firing rate determines how often per time interval t(e.g.
seconds) the transition is made

● The probability of a transition to be triggered is
where R(s, s') is the rate

● E.g. R(S0, S1) in our example was 20. The probability of this
transition to be triggered within one second is therefore

● If there is more than one transition with R(s, s') > 0
 → the next state is decided by a race condition

● This means that the first transition that is triggered
determines the next state

1−e−R (s,s')∗t

1−e−20

 10/33

CTMC and Probabilities

● We can also calculate the probabilities of the next states,
producing another DTMC

● The total rate or exit rate E(s) of a state is the sum of all
transition rates

● The probability of a transition is then
● Example from before:

R(s,s ')
E(s)

 11/33

Continuous Stochastic
Logic

● Continuous Stochastic Logic(CSL) is an extension of CTL
● Removed:

– All temporal logic operators(Global, Finally, etc.)
except Next(X)

– Quantifiers
● Added:

– Two probabilistic operators see → next slide

– Time-bounded Until(e.g. a U[0.3, 1.5] b)

– All other temporal logic operators can be derived

from the bounded until and are consequently also

time-bounded

 12/33

Transient-State and
Steady-State Behaviour

● To understand the two probabilistic operators, we first have
to cover transient-state and steady-state behaviour

● Transient-state behaviour:
– Behaviour/State at instant t

– E.g. (F[10, 10] Accept) → t = 10

– Probability-Operator P: P>0.8(F
[10, 10] Accept)

– Can be used for bounds too: P>0.8(F
[0, 10] Accept)

● Steady-state behaviour:
– Behaviour/State at t ∞→
– Steady-state operator S: S<0.2(Accept)

 13/33

Example from before:

Example properties in CSL:
● (P>0.3(S0 ∨ Pending U[0, 0.2] Failed)) true→
● (P>0.8(S0 ∨ Pending U[0, 0.2] Failed)) false→
● (S>0.99(Failed)) true→
● (P<0.8(F

[0, 0.1] Failed)) true→

How do we know this? → PRISM

 14/33

Outline

● Introduction
● CTMC
● PRISM
● PRISM and CTMC
● Summary

 15/33

PRISM

● PRISM is a free open-source probabilistic model checker
released under GPL

● Current version is 4.4
● Besides checking, it is also a tool to describe models and

properties(with GUI)
● Additionally, it is capable of simulating models using a

discrete-event simulation engine

 16/33

A Quick Introduction to
Syntax

● Models are described using the PRISM Language
● There are several types of models:

 Markov decision processes(mdp)
 discrete-time Markov chains(dtmc)
 continuous-time Markov chains(ctmc)
 probabilistic timed automata(pta)

● Properties are defined in the PRISM Property
Specification Language

 17/33

PRISM Language

● A model in PRISM consists of modules
● Each module has variables and commands
● Variables can have a standard data type, as seen in many

other programming languages(int, bool and double) but
may have to be bounded

● Commands are comprised of guards and updates
● A guard is a condition of the local variables when the update

should be executed
● An update is a transition function

 18/33

Example from the PRISM manual:

 ← Modules

 ← Variables

 ← Commands

mdp

module M1

x : [0..2] init 0;

[] x=0 -> 0.8:(x'=0) + 0.2:(x'=1);
[] x=1 & y!=2 -> (x'=2);
[] x=2 -> 0.5:(x'=2) + 0.5:(x'=0);

endmodule

module M2

y : [0..2] init 0;

[] y=0 -> 0.8:(y'=0) + 0.2:(y'=1);
[] y=1 & x!=2 -> (y'=2);
[] y=2 -> 0.5:(y'=2) + 0.5:(y'=0);

endmodule

 19/33

● Modules are executed in parallel
● The scheduling is depending on the model type:

● mdp: non-deterministic
● dtmc: probabilistic
● ctmc: race condition

● Race condition:
● The first transition to trigger determines the next state
● Exponentially distributed
● Consider two rates R1=20 and R2=30. Distributions:

1−e−R (s,s ')∗t

 20/33

Rewards

● Rewards are a way to get additional information about the
model

● An example would be “the average path time” of the model:

● Here we assign a reward of 1 to each state where the

condition holds. In this case every state
● We can later accumulate the rewards

rewards “steps”
true : 1;

endrewards

 21/33

Labels

● Labels are a way of identifying a set of states by names
instead of numbers or conditions

● Pending, Accept, Failed from our ctmc are examples for
such labels

● We could define them in the following way:

label "accept" = s=1 | s=2;
label "pending" = s=2;
label "failed" = s=3;

 22/33

PRISM Property
Specification Language

● Combines the syntax of several logics(CTL, LTL, PCTL, CSL,
etc.)

● Furthermore, it is possible to define properties about
rewards

● The syntax is generally very similar to the definitions we
already saw. E.g.:

● We can also let PRISM calculate actual probabilities

instead of boolean value. E.g.:

● In a sentence: What is the probability that the

program does not fail the first ten seconds?

P<0.1[G[0,10] !”failed”]

P=?[G[0,10] !”failed”]

 23/33

Verification and
Simulation

● We can calculate the truth value or probabilities of our
models either through verification or simulation

● Both methods will be covered in more detail in the next
presentation

● Verification is using one of four computation engines:
– Sparse(small models)

– Explicit(even smaller models)

– MTBDD(often used in MDP)

– Hybrid(combination of explicit and symbolic)
● Simulation is using PRISM's discrete-event simulation

engine

 24/33

Outline

● Introduction
● CTMC
● PRISM
● PRISM and CTMC
● Summary

 25/33

Running Example

● Remember our example from before?

● We will now write a model in PRISM and query our

previous properties + the average path length

 26/33

Example in PRISM:

ctmc

module running_example

s : [0..3] init 0;

[] s=0 -> 60:(s'=0) + 20:(s'=1) + 30:(s'=2);
[] s=1 -> 100:(s'=1) + 10:(s'=3);
[] s=2 -> 50:(s'=3);

endmodule

rewards "steps"
true : 1;

endrewards

label "accept" = s=1 | s=2;
label "pending" = s=2;
label "failed" = s=3;

 27/33

Properties:

● (P>0.3(S0 ∨ Pending U[0, 0.2] Failed))
● (P>0.8(S0 ∨ Pending U[0, 0.2] Failed))
● (S>0.99(Failed))
● (P<0.8(F

[0, 0.1] Failed))

Properties in PRISM Property Specification Language:

● P>0.3[s=0 | "pending" U[0, 0.2] "failed"]
● P>0.8[s=0 | "pending" U[0, 0.2] "failed"]
● S>0.99 ["failed"]
● P<0.8[F[0, 0.1] "failed"]

Average path time:

● R=?[F “failed”]

 28/33

Working with properties

● Sample paths can be created in the simulator
● A path can be chosen automatically or be created manually
● Properties are created using the Property Editor
● They can be either verified by calculation or simulation
● Changing the property epsilon in the properties, the

precision of the simulation can be changed
● Changing the number of samples, precision can be

increased

 29/33

Circadian Clock Example

 30/33

Outline

● Introduction
● CTMC
● PRISM
● PRISM and CTMC
● Summary

 31/33

Summary

● Stochastic Model Checking is used to analyse models with
probabilistic behaviour

● Continuous-time Markov chains are models with probabilistic
behaviour

● PRISM provides a language to describe CTMC
● We can simulate our model and create traces/paths
● We can also query a CTMC with the PRISM Property

Specification Language, similar to CSL

 32/33

References

● Kwiatkowska, M., Norman, G., & Parker, D. (2007, May).
Stochastic model checking. In SFM (Vol. 7, pp. 220-270).

● Kwiatkowska, M., Norman, G., & Parker, D. (2010,
September). Advances and challenges of probabilistic model
checking. In Communication, Control, and Computing
(Allerton), 2010 48th Annual Allerton Conference on (pp.
1691-1698). IEEE.

● Barkai, N., & Leibler, S. (2000). Biological rhythms: Circadian
clocks limited by noise. Nature, 403(6767), 267-268.

● http://www.prismmodelchecker.org/manual/

 33/33

Questions?

	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Folie 16
	Folie 17
	Folie 18
	Folie 19
	Folie 20
	Folie 21
	Folie 22
	Folie 23
	Folie 24
	Folie 25
	Folie 26
	Folie 27
	Folie 28
	Folie 29
	Folie 30
	Folie 31
	Folie 32
	Folie 33

