PRISM and CTMC

Mario Binder WS 2017/2018

Outline

- Introduction
- CTMC
- PRISM
- PRISM and CTMC
- Summary

Introduction

- A model checker is a program that decides if a set of given properties hold in every state of a model
- A model could be anything. It could be a simple FSM or an electronic circuit
- A property is usually described with a set of logical operators and variables. Every property has a truth value
- There are also different languages for describing properties. A few examples:
 - CTL
 - LTL
 - PCTL

Computational Tree Logic

- Computational Tree Logic(CTL) has all operators from predicate logic plus two quantifiers and a few temporal operators. It operates on paths
- A path or trace is a sequence of states, representing a execution of a model
- Additional Quantifiers:
 - $A\varphi$: φ has to hold in all subsequent paths
 - $\mathsf{E}\varphi\,$: there exists one or more paths where $\varphi\,holds$

- Temporal Operators:
 - Next (X)
 - Globally(G) and Finally(F)
 - Until(U) and Weak Until(W)

Example for a model(Kripke Structure):

Example properties in CTL:

- $(AX Accept)(S_0) \rightarrow False$
- (EF *Failed*)(S₁) → True
- (AG **Pending**)(S_2) \rightarrow False
- (A (Accept U Failed))(S₁) → True

Stochastic Model Checking

- Stochastic model checking is a part of probabilistic model checking, meaning that the model has probabilistic behaviour
- In addition to check if a model satisfies some properties, it also can determine the likelihood of reaching a specific state

- Examples for model types, where we can describe probabilistic behaviour:
 - Discrete-time Markov chains
 - Continuous-time Markov chains
- Furthermore, the property language has to be probabilistic as well

Outline

- Introduction
- CTMC
- PRISM
- PRISM and CTMC
- Summary

Continuous-time Markov chain

- Continuous-time Markov chains(ctmc) are essentially Kripke structures with transition firing rates
- Example from before:

- A firing rate determines how often per time interval **t**(e.g. seconds) the transition is made
- The probability of a transition to be triggered is $1-e^{-R(s,s')*t}$ where R(s, s') is the rate
- E.g. $R(S_0, S_1)$ in our example was 20. The probability of this transition to be triggered within one second is therefore $1-e^{-20}$

- If there is more than one transition with R(s, s') > 0
 → the next state is decided by a race condition
- This means that the first transition that is triggered determines the next state

CTMC and **Probabilities**

- We can also calculate the probabilities of the next states, producing another DTMC
- The total rate or exit rate E(s) of a state is the sum of all transition rates
- The probability of a transition is then $\frac{R(s,s')}{E(s)}$
- Example from before:

Continuous Stochastic Logic

- Continuous Stochastic Logic(CSL) is an extension of CTL
- Removed:
 - All temporal logic operators (Global, Finally, etc.) except Next(X)
 - Quantifiers
- Added:
 - Two probabilistic operators \rightarrow see **next slide**
 - **Time-bounded Until**(e.g. a U^[0.3, 1.5] b)
 - All other temporal logic operators can be derived from the bounded until and are consequently also time-bounded

Transient-State and Steady-State Behaviour

- To understand the two probabilistic operators, we first have to cover transient-state and steady-state behaviour
- Transient-state behaviour:
 - Behaviour/State at instant **t**
 - E.g. ($F^{[10, 10]}$ **Accept**) \rightarrow **t** = 10
 - Probability-Operator P: P_{>0.8}(F^[10, 10] Accept)
 - Can be used for bounds too: P_{>0.8}(F^[0, 10] Accept)

- Steady-state behaviour:
 - Behaviour/State at $\mathbf{t} \rightarrow \boldsymbol{\infty}$
 - Steady-state operator S: S_{<0.2}(Accept)

Example from before:

Example properties in CSL:

- ($P_{>0.3}$ ($S_0 \lor Pending U^{[0, 0.2]} Failed$)) \rightarrow true
- ($P_{>0.8}$ ($S_0 \lor Pending \cup U^{[0, 0.2]} Failed$)) \rightarrow false

13/33

- $(S_{>0.99}(Failed)) \rightarrow true$
- $(P_{<0.8}(F^{[0, 0.1]} Failed)) \rightarrow true$

How do we know this? → **PRISM**

Outline

- Introduction
- CTMC
- PRISM
- PRISM and CTMC
- Summary

PRISM

- **PRISM** is a free open-source probabilistic model checker released under GPL
- Current version is 4.4
- Besides checking, it is also a tool to describe models and properties(with GUI)

15/33

 Additionally, it is capable of simulating models using a discrete-event simulation engine

A Quick Introduction to Syntax

- Models are described using the PRISM Language
- There are several types of models:
 - Markov decision processes(mdp)
 - discrete-time Markov chains(dtmc)
 - continuous-time Markov chains(ctmc)

16/33

probabilistic timed automata(pta)

 Properties are defined in the PRISM Property Specification Language

PRISM Language

- A model in PRISM consists of **modules**
- Each module has variables and commands
- Variables can have a standard data type, as seen in many other programming languages(int, bool and double) but may have to be bounded
- Commands are comprised of guards and updates
- A guard is a condition of the local variables when the update should be executed

17/33

• An update is a transition function

Example from the PRISM manual:

mdp
module M1
x : [02] init 0;
[] $x=0 \rightarrow 0.8:(x'=0) + 0.2:(x'=1);$ [] $x=1 & y!=2 \rightarrow (x'=2);$ [] $x=2 \rightarrow 0.5:(x'=2) + 0.5:(x'=0);$
endmodule
module M2
y : [02] init 0;
[] $y=0 \rightarrow 0.8:(y'=0) + 0.2:(y'=1);$ [] $y=1 \& x!=2 \rightarrow (y'=2);$ [] $y=2 \rightarrow 0.5:(y'=2) + 0.5:(y'=0);$
endmodule

- $\leftarrow \mathsf{Modules}$
- \leftarrow Variables

- Modules are executed in parallel
- The scheduling is depending on the model type:
 - mdp: non-deterministic
 - dtmc: probabilistic
 - ctmc: race condition
- Race condition:
 - The first transition to trigger determines the next state
 - Exponentially distributed 1-e^{-R(s,s')*t}
 - Consider two rates **R1=20** and **R2=30**. Distributions:

Rewards

- Rewards are a way to get additional information about the model
- An example would be "the average path time" of the model:

```
rewards "steps"
true : 1;
endrewards
```

- Here we assign a reward of 1 to each state where the condition holds. In this case every state
- We can later **accumulate** the rewards

Labels

- Labels are a way of identifying a set of states by names instead of numbers or conditions
- Pending, Accept, Failed from our ctmc are examples for such labels

21/33

• We could define them in the following way:

label "accept" = s=1 | s=2; label "pending" = s=2; label "failed" = s=3;

PRISM Property Specification Language

- Combines the syntax of several logics(CTL, LTL, PCTL, CSL, etc.)
- Furthermore, it is possible to define properties about rewards
- The syntax is generally very similar to the definitions we already saw. E.g.:

P<0.1[G[0,10] !"failed"]</pre>

 We can also let PRISM calculate actual probabilities instead of boolean value. E.g.:
 P=?[G[0,10] !"failed"]

22/33

• In a sentence: What is the probability that the program does not fail the first ten seconds?

Verification and Simulation

- We can calculate the truth value or probabilities of our models either through verification or simulation
- Both methods will be covered in more detail in the next presentation
- Verification is using one of four computation engines:
 - **Sparse**(small models)
 - **Explicit**(even smaller models)
 - **MTBDD**(often used in MDP)
 - Hybrid(combination of explicit and symbolic)
- Simulation is using PRISM's discrete-event simulation engine

Outline

- Introduction
- CTMC
- PRISM
- PRISM and CTMC
- Summary

Running Example

• Remember our example from before?

 We will now write a model in PRISM and query our previous properties + the average path length

Example in PRISM:

ctmc module running_example s : [0..3] init 0; [] s=0 -> 60:(s'=0) + 20:(s'=1) + 30:(s'=2); [] s=1 -> 100:(s'=1) + 10:(s'=3); [] s=2 -> 50:(s'=3); endmodule rewards "steps" true : 1; endrewards label "accept" = s=1 | s=2; label "pending" = s=2; label "failed" = s=3;

Properties:

- (P_{>0.3}(**S**₀ ∨ *Pending* U^[0, 0.2] *Failed*))
- (P_{>0.8}(S₀ ∨ *Pending* U^[0, 0.2] *Failed*))
- (S_{>0.99}(*Failed*))
- (P_{<0.8}(F^[0, 0.1] Failed))

Properties in PRISM Property Specification Language:

- P>0.3[s=0 | "pending" U[0, 0.2] "failed"]
- P>0.8[s=0 | "pending" U[0, 0.2] "failed"]
- S>0.99 ["failed"]
- P<0.8[F[0, 0.1] "failed"]

Average path time:

R=?[F "failed"]

Working with properties

- Sample paths can be created in the simulator
- A path can be chosen automatically or be created manually

- Properties are created using the Property Editor
- They can be either verified by calculation or simulation
- Changing the property epsilon in the properties, the precision of the simulation can be changed
- Changing the number of samples, precision can be increased

Circadian Clock Example

Outline

- Introduction
- CTMC
- PRISM
- PRISM and CTMC
- Summary

Summary

- Stochastic Model Checking is used to analyse models with probabilistic behaviour
- Continuous-time Markov chains are models with probabilistic behaviour

- PRISM provides a language to describe CTMC
- We can simulate our model and create traces/paths
- We can also query a CTMC with the PRISM Property Specification Language, similar to CSL

References

- Kwiatkowska, M., Norman, G., & Parker, D. (2007, May). Stochastic model checking. In SFM (Vol. 7, pp. 220-270).
- Kwiatkowska, M., Norman, G., & Parker, D. (2010, September). Advances and challenges of probabilistic model checking. In Communication, Control, and Computing (Allerton), 2010 48th Annual Allerton Conference on (pp. 1691-1698). IEEE.
- Barkai, N., & Leibler, S. (2000). Biological rhythms: Circadian clocks limited by noise. Nature, 403(6767), 267-268.

32/33

http://www.prismmodelchecker.org/manual/

Questions?

