| Gruppe | Hemmecke (10:15) | Hemmecke (11:00) | Popov | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Name | | Matrikel | | | | | | SKZ | |

Klausur 1
 Berechenbarkeit und Komplexität

17. November 2017

Part 1 NFSM2017
Let N be the nondeterministic finite state machine

$$
\left(\left\{q_{0}, q_{1}, q_{2}, q_{3}, q_{4}\right\},\{0,1\}, \nu,\left\{q_{0}\right\},\left\{q_{1}, q_{3}\right\}\right)
$$

whose transition function ν is given below.

Following the states it ends up in q_{4}.

| $\mathbf{2}$ | yes | \quad Is $00110010 \in L(N)$? |
| :--- | :--- | :--- | :--- |

Follow the states $q_{0}, q_{3}, q_{2}, q_{0}, q_{1}, q_{3}, q_{2}, q_{0}, q_{3}$.

$\mathbf{3}$		no
$\mathbf{4}$	yes	

Is $L(N)$ finite?
Does there exist a regular expression r such that $L(r)=\overline{L(N)}=\{0,1\}^{*} \backslash$ $L(N)$?
$L(N)$ is regular and so is its complement.

$\mathbf{5}$	yes	

$L(N)$ is regular. Hence, $\overline{L(N)}$ is regular, and thus also recursively enumerable.

| $\mathbf{6}$ | yes | \quad Is there a deterministic finite state machine M with less than 50 states |
| :--- | :--- | :--- | such that $L(M)=L(N)$?

According to the subset construction, there must be a DFSM with at most $2^{5}=32$ states.

7	yes	
$\mathbf{8}$	yes	

Is there an enumerator Turing machine G such that $G e n(G)=L(N)$?
Does there exists a deterministic finite state machine D such that $L(D)=$ $L(N) \circ \overline{L(N)}$?
$L(N)$ and $\overline{L(N)}$ are both regular. Concatenation of two regular languages gives a regular language.

Part 2 Computable2017
Let M be a Turing machine such that it accepts a word, if and only if it is a tautonym. A tautonym is a word or a name made up of two identical parts, such as so so, tom tom, Baden Baden or Pago Pago.

$\mathbf{9}$	yes		Is $L(M)$ recursively enumerable?
$\mathbf{1 0}$	yes		Is $L(M)$ recursive?
$\mathbf{1 1}$		no	Is $L(M)$ finite?

There can be arbitrarily large tautonyms.
Let L be a recursively enumerable language. Can it be concluded that $L(M) \cap L$ is recursive?

Intersection of recursive and recursively enumerable languages is recursively enumerable but not necessarily recursive.

$\mathbf{1 3}$	yes	
$\mathbf{1 4}$	yes	
$\mathbf{1 5}$	yes	

Is every primitive recursive function also a μ-recursive function?
Does there exist a μ-recursive function that is LOOP computable?
Is every Turing-computable function $f:\{0,1\}^{*} \rightarrow\{0,1\}^{*}$ also μ-recursive (identifying sequences of 0,1 with natural numbers in binary representation)?

Part 3 Pumping2017
Let

$$
\begin{aligned}
& L_{1}=\left\{a^{2 n} b^{7 m} a^{n-m+2017} \mid n, m \in \mathbb{N}, m<n<2017\right\} \subset\{a, b\}^{*}, \\
& L_{2}=\left\{a^{m} b^{n} a^{n+m+2017} \mid m, n \in \mathbb{N}, m>n>1\right\} \subset\{a, b\}^{*}
\end{aligned}
$$

Is there a deterministic finite state machine M such that $L(M)=L_{1}$?
The language L_{1} is finite and thus regular.

$\mathbf{1 7}$		no
$\mathbf{1 8}$	yes	
$\mathbf{1 9}$	yes	

Is there a deterministic finite state machine M^{\prime} such that $L\left(M^{\prime}\right)=L_{2}$?
Is there an enumerator Turing machine G such that $\operatorname{Gen}(G)=L_{2}$?
Is there a deterministic finite state machine D such that $L(D)=L_{1} \cap L_{2}$?
The language $L_{1} \cap L_{2}$ is finite and thus regular.
Is there a language L such that $L \cup L_{2}$ is regular?
Yes. Take as L the complement of L_{2}.

Part 4 WhileLoop2017
Take the WHILE program P defined as:

```
x0 := 0
while x1 <> x2 do
    x0 := x0 + 1;
    x1 := x1 + 1
```

end;

Remark: Here a loop
while xi <> xj do ...
has the intuitive meaning "iterate ... while the value of variable x_{i} is different from the value of $x_{j} "$ (which can be expressed by a program in the core syntax of WHILE programs). Take also the WHILE program P^{\prime} defined as (P is as above):
if $\mathrm{x} 1<=\mathrm{x} 2$ then
end;

$\mathbf{2 1}$		no
$\mathbf{2 2}$	yes	
$\mathbf{2 3}$	yes	

Is the function $x_{0}:=f\left(x_{1}, x_{2}\right)$ computed by P LOOP-computable?
Is the function $x_{0}:=f^{\prime}\left(x_{1}, x_{2}\right)$ computed by P^{\prime} LOOP-computable?
Are both f and $f^{\prime} \mu$-recursive?
Part 5 Open2017
((2 points))
Let $N=\left(Q, \Sigma, \delta, q_{0}, F\right)$ be a deterministic finite state machine with $Q=\left\{q_{0}, q_{1}, q_{2}\right\}$, $\Sigma=\{0,1\}, S=\left\{q_{0}\right\}, F=\left\{q_{0}\right\}$, and transition function δ as given below.

1. Let X_{i} denote the regular expression for the language accepted by N when starting in state q_{i}.
Write down an equation system for X_{0}, \ldots, X_{2}.
2. Give a regular expression r such that $L(r)=L(N)$ (you may apply Arden's Lemma to the result of 1).

$$
\begin{aligned}
X_{0} & =0 X_{1}+1 X_{2}+\varepsilon \\
X_{1} & =1 X_{0}+0 X_{2} \\
X_{2} & =0 X_{0}+1 X_{1} \\
r & =\left((0+11)(01)^{*}(1+00)+10\right)^{*}
\end{aligned}
$$

alternatively:

$$
r=\left(01+(00+1)(10)^{*}(0+11)\right)^{*}
$$

