Gruppe	Hemmecke (10:15) Hemmecke (11:00)		Popov		
Name		Matrikel	SKZ		

Klausur 1 Berechenbarkeit und Komplexität

Part 1 NFSM2017

Let N be the nondeterministic finite state machine

 $(\{q_0, q_1, q_2, q_3, q_4\}, \{0, 1\}, \nu, \{q_0\}, \{q_1, q_3\}),$

whose transition function ν is given below.

1 no	Is $1001100111 \in L(N)$?
	Following the states it ends up in q_4 .
2 yes	$Is \ 00110010 \in L(N)$?
	Follow the states $q_0, q_3, q_2, q_0, q_1, q_3, q_2, q_0, q_3$.
3 no	Is $L(N)$ finite?
4 yes	Does there exist a regular expression r such that $L(r) = \overline{L(N)} = \{0,1\}^* \setminus L(N)$?
	L(N) is regular and so is its complement.
5 yes	Is $\overline{L(N)}$ recursively enumerable?
	$L(N)$ is regular. Hence, $\overline{L(N)}$ is regular, and thus also recursively enumerable.
6 yes	Is there a deterministic finite state machine M with less than 50 states such that $L(M) = L(N)$?
	According to the subset construction, there must be a DFSM with at most $2^5 = 32$ states.
7 yes	Is there an enumerator Turing machine G such that $Gen(G) = L(N)$?
8 yes	Does there exists a deterministic finite state machine D such that $L(D) = L(N) \circ \overline{L(N)}$?
	$L(N)$ and $\overline{L(N)}$ are both regular. Concatenation of two regular languages gives a regular language.

Part 2 Computable2017

Let M be a Turing machine such that it accepts a word, if and only if it is a tautonym. A tautonym is a word or a name made up of two identical parts, such as so so, tom tom, Baden Baden or Pago Pago.

9	yes	Is $L(M)$ recursively enumerable?
10	yes	Is $L(M)$ recursive?
11	no	Is $L(M)$ finite?
		There can be arbitrarily large tautonyms.
12	no	Let L be a recursively enumerable language. Can it be concluded that $L(M) \cap L$ is recursive?
		Intersection of recursive and recursively enumerable languages is recursively enumerable but not necessarily recursive.
13	yes	Is every primitive recursive function also a μ -recursive function?
14	yes	Does there exist a μ -recursive function that is LOOP computable?
15	yes	Is every Turing-computable function $f : \{0,1\}^* \to \{0,1\}^*$ also μ -recursive (identifying sequences of 0,1 with natural numbers in binary representation)?
	Par Let	t 3 Pumping2017
		$L_{1} = \left\{ a^{2n} b^{7m} a^{n-m+2017} \mid n, m \in \mathbb{N}, m < n < 2017 \right\} \subset \left\{ a, b \right\}^{*}, L_{2} = \left\{ a^{m} b^{n} a^{n+m+2017} \mid m, n \in \mathbb{N}, m > n > 1 \right\} \subset \left\{ a, b \right\}^{*}.$
16	yes	Is there a deterministic finite state machine M such that $L(M) = L_1$?
		The language L_1 is finite and thus regular.
17	no	The language L_1 is finite and thus regular. Is there a deterministic finite state machine M' such that $L(M') = L_2$?
17 18	no yes	The language L_1 is finite and thus regular. Is there a deterministic finite state machine M' such that $L(M') = L_2$? Is there an enumerator Turing machine G such that $Gen(G) = L_2$?
17 18 19	no yes yes	The language L_1 is finite and thus regular. Is there a deterministic finite state machine M' such that $L(M') = L_2$? Is there an enumerator Turing machine G such that $Gen(G) = L_2$? Is there a deterministic finite state machine D such that $L(D) = L_1 \cap L_2$?
17 18 19	no yes yes	The language L_1 is finite and thus regular. Is there a deterministic finite state machine M' such that $L(M') = L_2$? Is there an enumerator Turing machine G such that $Gen(G) = L_2$? Is there a deterministic finite state machine D such that $L(D) = L_1 \cap L_2$? The language $L_1 \cap L_2$ is finite and thus regular.
17 18 19 20	no yes yes yes yes	The language L_1 is finite and thus regular. Is there a deterministic finite state machine M' such that $L(M') = L_2$? Is there an enumerator Turing machine G such that $Gen(G) = L_2$? Is there a deterministic finite state machine D such that $L(D) = L_1 \cap L_2$? The language $L_1 \cap L_2$ is finite and thus regular. Is there a language L such that $L \cup L_2$ is regular?
17 18 19 20	no yes yes yes yes	The language L_1 is finite and thus regular. Is there a deterministic finite state machine M' such that $L(M') = L_2$? Is there an enumerator Turing machine G such that $Gen(G) = L_2$? Is there a deterministic finite state machine D such that $L(D) = L_1 \cap L_2$? The language $L_1 \cap L_2$ is finite and thus regular. Is there a language L such that $L \cup L_2$ is regular? Yes. Take as L the complement of L_2 .

Part 4 WhileLoop2017 Take the WHILE program P defined as:

```
x0 := 0
while x1 <> x2 do
    x0 := x0 + 1;
    x1 := x1 + 1
end;
```

 ${\it Remark:}\ {\it Here}\ a\ loop$

while xi <> xj do \ldots

has the intuitive meaning "iterate ... while the value of variable x_i is different from the value of x_j " (which can be expressed by a program in the core syntax of WHILE programs). Take also the WHILE program P' defined as (P is as above):

if x1 <= x2 then
 P
end;</pre>

21		no	
22	yes		
23	yes		

Is the function $x_0 := f(x_1, x_2)$ computed by P LOOP-computable? Is the function $x_0 := f'(x_1, x_2)$ computed by P' LOOP-computable? Are both f and f' μ -recursive?

Part 5 *Open2017 ((2 points))*

Let $N = (Q, \Sigma, \delta, q_0, F)$ be a deterministic finite state machine with $Q = \{q_0, q_1, q_2\}$, $\Sigma = \{0, 1\}, S = \{q_0\}, F = \{q_0\}, and transition function <math>\delta$ as given below.

1. Let X_i denote the regular expression for the language accepted by N when starting in state q_i .

Write down an equation system for X_0, \ldots, X_2 .

2. Give a regular expression r such that L(r) = L(N) (you may apply Arden's Lemma to the result of 1).

 $\begin{aligned} X_0 &= 0X_1 + 1X_2 + \varepsilon \\ X_1 &= 1X_0 + 0X_2 \\ X_2 &= 0X_0 + 1X_1 \\ r &= ((0+11)(01)^*(1+00) + 10)^* \\ alternatively: \\ r &= (01 + (00+1)(10)^*(0+11))^* \end{aligned}$