Problems Solved:

Name:

Matrikel-Nr.:

Problem 21. Let $f : \mathbb{N} \to \mathbb{N}$ be the (partial) function

$$f(x) = \begin{cases} y & \text{such that } x = y^2 \text{ if such a } y \text{ exists,} \\ \text{undefined} & \text{if there is no } y \text{ with } x = y^2. \end{cases}$$

- 1. Is f loop computable? (Justify your answer.)
- 2. Is f a primitive recursive function? (Justify your answer.)
- 3. Define f by using the base functions, composition, the primitive recursion scheme, and μ -recursion (Definitions 29 and 30 from the lecture notes). Additionally you are allowed to use the (primitive recursive) functions

$$m: \mathbb{N}^2 \to \mathbb{N}, \quad (x, y) \mapsto x \cdot y$$

and $u: \mathbb{N}^2 \to \mathbb{N}$,

$$u(x,y) = \begin{cases} 0 & \text{if } x = y, \\ 1 & \text{if } x \neq y. \end{cases}$$

Other functions or rules are forbidden.

- 4. Why do you need the μ -recursion in your construction?
- 5. Is your construction in Kleene's normal form? If it is not, describe an (informal) procedure how one can turn it into Kleene's normal form.

Problem 22. Let $f : \mathbb{N} \to \mathbb{N}$ be the function

$$f(x) = \begin{cases} y & \text{such that } x = y^2 \text{ if such a } y \text{ exists,} \\ 0 & \text{if there is no } y \text{ with } x = y^2. \end{cases}$$

- 1. Is f loop computable? (Justify your answer.)
- 2. Is f a primitive recursive function? (Justify your answer.)
- 3. Define f by using the base functions, composition and the primitive recursion scheme. Additionally you are allowed to use the (primitive recursive) functions

$$m: \mathbb{N}^2 \to \mathbb{N}, \quad (x, y) \mapsto x \cdot y$$

 $u: \mathbb{N}^2 \to \mathbb{N},$

$$u(x,y) = \begin{cases} 0 & \text{if } x = y, \\ 1 & \text{if } x \neq y. \end{cases}$$

and $IF : \mathbb{N}^3 \to \mathbb{N}$,

$$IF(x, y, z) = \begin{cases} y & \text{if } x = 0\\ z & \text{otherwise.} \end{cases}$$

Berechenbarkeit und Komplexität, WS2017

21 22 23 24 25

Problem 23. Let P be the following program.

END;

Similar to the construction in the lecture notes, let $f_P : \mathbb{N}^2 \to \mathbb{N}^2$ be the function that maps the given $(0, x_1)$ at the start of P to the values (x_0, x_1) after the execution of the program P. Show that f_P is primitive recursive by translating the loop program into a primitive recursive definition for f_P . Follow the steps given in the lecture notes.

Compute $f_P(0,1)$ via your primitive recursive definition and compare it with the result you get from executing P with input $x_1 = 1$.

Problem 24. Let $f : \mathbb{N} \to \mathbb{N}$ be defined by f(n) := 2n + 1.

- 1. Show that f is loop computable by giving a loop program that computes f.
- 2. Show that f is primitive recursive by giving a primitive recursive definition of f.

Problem 25. Let $q: \mathbb{N}^2 \to \mathbb{N}, (x, y) \mapsto x \cdot x$ (sic!) and $u: \mathbb{N}^2 \to \mathbb{N}$,

$$u(x,y) = \begin{cases} 0 & \text{if } x = y, \\ 1 & \text{if } x \neq y, \end{cases}$$

be given primitive recursive functions. Let $r:\mathbb{N}^2\to\mathbb{N}$ be definied by

$$r(x) = (\mu p)(x)$$
 minimization
 $p(y, x) = u(q(y, x), \operatorname{proj}_2^2(y, x))$ composition

Informally we have

$$r(x) = \min_{y} \{ y \in \mathbb{N} \, | \, u(q(y, x), x)) = 0 \, \}$$

Similar to the treatise in the lecture notes, construct a while program that computes r. For simplicity, you are allowed to write statements such as $x_k = q(x_i, x_j)$ and $x_k = u(x_i, x_j)$ into your program. What will your program compute if it is started with input $x_1 = 2$?

Berechenbarkeit und Komplexität, WS2017