Problems Solved:

16	17	18	19	20

Name:

Matrikel-Nr.:

Problem 16. Answer the following questions and provide reasons for your answers. You need to be concerned about the implications for the general computability of functions.

1. Let R be a RAM that reads exactly one number from its input tape and always terminates with 0 or 1 written on its output tape. Is there a function $f: \mathbb{N} \rightarrow \mathbb{N}$ such that $f(x)=y$ if and only if the input was x and after termination y is on the output tape of R ?
2. Let $f: \mathbb{N} \rightarrow \mathbb{N}$ be a function. Is there always a RAM R such that R terminates on every input and that R with input $n \in \mathbb{N}$ has written $f(n)$ to its output tape?

Hint: The task basically asks you whether there is a bijection between the set of functions from \mathbb{N} to \mathbb{N} and the set of all RAMs. For one part you can use a cardinality argument for those sets.

Problem 17. Write a RAM program that from a given natural number n prints its binary representation. In order to simplify the problem the output shall be in low positions first format, i.e., the number 8_{10} is 0001_{2} but not 1000_{2}.
Hint: please note that the computation of the quotient respectively remainder of a division by 2 can be implemented by the repeated subtraction of 2 .

Problem 18. In the following use only the definition of a loop program as given in Def. 23 of the lecture notes, Section 3.2.2. Note that it is not allowed to use abbreviations like

$$
\begin{aligned}
& \mathrm{x}_{\mathrm{i}}:=\mathrm{x}_{\mathrm{j}}-\mathrm{x}_{\mathrm{k}} \\
& \mathrm{x}_{\mathrm{i}}:=\mathrm{x}_{\mathrm{j}}+\mathrm{x}_{\mathrm{k}}
\end{aligned}
$$

Furthermore, the variables in a loop program are only x_{0}, x_{1}, \ldots

1. Show that the function

$$
s\left(x_{1}, x_{2}\right)= \begin{cases}1 & \text { if } x_{1}<x_{2} \\ 0 & \text { otherwise }\end{cases}
$$

is loop computable. I.e. give an explicit loop program for s.
2. Write a loop program that computes the function $d: \mathbb{N}^{2} \rightarrow \mathbb{N}$ where $d\left(x_{1}, x_{2}\right)$ is $k \in \mathbb{N}$ such that $k \cdot\left(x_{2}+1\right)=x_{1}+1$ if such a k exists. The result is $d\left(x_{1}, x_{2}\right)=0$, if a k with the above property does not exist.
For simplicity in the program for d, you are allowed to use a construction like the following (with the obvious semantics) where P is an arbitrary loop program.
IF $\mathrm{x}_{\mathrm{i}}<\mathrm{x}_{\mathrm{j}}$ THEN P END;
Note: Only < is allowed in the condition and there is no "ELSE" branch.

Problem 19. Provide a loop program that computes the function $f(n)=n!=$ $\prod_{k=1}^{n} k$, and thus show that f is loop computable. In your program you are only allowed to uses statements from Definition 23 of the lecture notes.

Problem 20. Suppose P is a while-program that does not contain any WHILE statements, but might modify the values of the variables x_{1} and x_{2}.
Transform the following program into Kleene's normal form.
Hint: first translate the program into a goto program, replace the GOTOs by assignments to a control variable, and add the WHILE wrapper.

```
x}0:=
WHILE x }\mp@subsup{\textrm{x}}{1}{}\mathrm{ DO
    \mp@subsup{x}{1}{}}:=\mp@subsup{\textrm{x}}{1}{}-1
    x}2:= \mp@subsup{x}{1}{\prime}
    WHILE x x DO
        P;
        END;
END;
x}0:=\mp@subsup{\textrm{x}}{0}{}+
```

