Problems Solved:

11	12	13	14	15

Name:

Matrikel-Nr.:

Problem 11. Let $M_{1}=\left(Q_{1}, \Sigma, \delta_{1}, q_{1}, F_{1}\right)$ and $M_{2}=\left(Q_{2}, \Sigma, \delta_{2}, q_{2}, F_{2}\right)$ be two DFSM over the alphabet Σ. Let $L\left(M_{1}\right)$ and $L\left(M_{2}\right)$ be the languages accepted by M_{1} and M_{2}, respectively.
Construct a DFSM $M=(Q, \Sigma, \delta, q, F)$ whose language $L(M)$ is the intersection of $L\left(M_{1}\right)$ and $L\left(M_{2}\right)$. Write down Q, δ, q, and F explicitly.
Hint: M simulates the parallel execution of M_{1} and M_{2}. For that to work, M "remembers" in its state the state M_{1} as well as the state of M_{2}. This can be achieved by defining $Q=Q_{1} \times Q_{2}$.
Demonstrate your construction with the following DFSMs.

Problem 12. Show that the language $L=\left\{a^{m} b^{n} \mid m, n \in \mathbb{N} \wedge m \geq 2 n\right\}$ is not regular.

Problem 13. Let M_{1} be the DFSM with states $\left\{q_{1}, q_{2}, q_{3}, q_{4}\right\}$ whose transition graph is given below. Determine a regular expression r such that $L(r)=L\left(M_{1}\right)$. Show the derivation of the the final result by the technique based on Arden's Lemma (see lecture notes).

Problem 14. Let r be the following regular expression.

$$
a \cdot a \cdot(b \cdot a)^{*} \cdot b \cdot b^{*}
$$

Construct a nondeterministic finite state machine N such that $L(N)=L(r)$. Show the derivation of the result by following the technique presented in the proof of the theorem Equivalence of Regular Expressions and Automata (see lecture notes).

Problem 15. Write down explicitly a Turing machine M over $\Sigma=\{0\}$ which computes the function $d: \mathbb{N} \rightarrow \mathbb{N}$ given by $d(n)=2 n$.
Use unary representation: A number n is represented by the string 0^{n} consisting of n copies of the symbol 0 .

