7

8 9

10

6

Problems Solved:

Name:

Matrikel-Nr.:

Problem 6. Let L be an arbitrary finite set of strings over $\{0, 1\}$. Is it always possible to construct a non-deterministic finite state machine M with L(M) = L? If yes, give the principle of the construction and demonstrate it by some example. Furthermore, is it also always possible to construct a d deterministic finite state machine M' with L(M') = L? If yes, how?

Problem 7. Construct a deterministic finite state machine for each of the following two languages:

- 1. the language L_1 of all strings over $\{a, d, n\}$ that contain and as a substring.
- 2. the language L_2 of all strings over $\{d, e, n\}$ that end up with the string end.

Define each machine formally and draw its transition graph.

Problem 8. Construct explicitly a deterministic finite state machine $D = (Q, \Sigma, \delta, S, F)$ with alphabet $\Sigma = \{a, b, c\}$, such that the words of L(D) contain an even number of *a*'s, an odd number of *b*'s, and an even number of *c*'s. For example, *aabcc*, *cacba*, *aabaabb* are from L(D) and *babc*, *ccabab*, *caacbaabba* are not from L(D).

Problem 9. Let $N = (Q, \Sigma, \delta, S, F)$ be the NFSM given by $Q = \{q_0, q_1, q_2\}$, $\Sigma = \{0, 1\}, S = \{q_0\}, F = \{q_1, q_2\}$, and the transition function $\delta : Q \times \Sigma \to P(\Sigma)$ where $\delta(q_0, 0) = \{q_0, q_1\}, \delta(q_0, 1) = \{q_0, q_2\}$, and $\delta(q, \sigma) = \emptyset$ for $q \in \{q_1, q_2\}$ and all $\sigma \in \Sigma$.

- 1. Draw the transition graph of the NFSM.
- 2. Construct a DFSM D such that L(N) = L(D). Hint: Use the Subset Construction, cf. Section 2.2 in the lecture notes.

Problem 10. Let the DFSM $M = (Q, \Sigma, \delta, q_0, F)$ be given by $Q = \{q_0, q_1, q_2, q_3, q_4, q_5, q_6, q_7\}$, $\Sigma = \{0, 1\}, F = \{q_5, q_6\}$ and the following transition function $\delta : Q \times \Sigma \rightarrow Q$:

Construct a minimal DFSM D such that L(M) = L(D) using Algorithm MIN-IMIZE. (cf. Section 2.3 *Minimization of Finite State Machines*)

Berechenbarkeit und Komplexität, WS2017