
Validating the Formalization of Theories and Algorithms
of Discrete Mathematics by the Computer-Supported

Checking of Finite Models
Report on Bachelor Thesis in Seminar for Computer Algebra

Alexander Brunhuemer

March 9, 2017

Alexander Brunhuemer Validating the Formalization of Theories and Algorithms of Discrete Mathematics by the Computer-Supported Checking of Finite ModelsMarch 9, 2017 1 / 17



What is my thesis about?

Alexander Brunhuemer Validating the Formalization of Theories and Algorithms of Discrete Mathematics by the Computer-Supported Checking of Finite ModelsMarch 9, 2017 2 / 17



Why formalise mathematical theories?

Machines and new technologies brought new possibilities for
mathematicians

Computers don’t allow interpretations, they just do, what the
programmer or user tells them to do

Alexander Brunhuemer Validating the Formalization of Theories and Algorithms of Discrete Mathematics by the Computer-Supported Checking of Finite ModelsMarch 9, 2017 3 / 17



Verification of Formalisations

Developers created tools to support the process of formalisation and
its verification

Only way to ensure correctness of a program, which operates over an
unbounded domain, is to generate verification conditions

Typically this demands human interaction in form of annotations
(potential error source)

So we need a way to make sure the chosen annotations are correct

Possible solution: restrict domain of values to a finite number instead
of an unbounded domain and apply model-checking

Finite domain annotations can then be generalized to unbounded
domains

Alexander Brunhuemer Validating the Formalization of Theories and Algorithms of Discrete Mathematics by the Computer-Supported Checking of Finite ModelsMarch 9, 2017 4 / 17



Verification of Formalisations

Alexander Brunhuemer Validating the Formalization of Theories and Algorithms of Discrete Mathematics by the Computer-Supported Checking of Finite ModelsMarch 9, 2017 5 / 17



State of the Art

Alexander Brunhuemer Validating the Formalization of Theories and Algorithms of Discrete Mathematics by the Computer-Supported Checking of Finite ModelsMarch 9, 2017 6 / 17



RISCAL - What does RISCAL do?

Supports process of verification

Formulation of mathematical theories and high-level algorithms

based on a type system which ensures that all variable domains are
finite at any time

Alexander Brunhuemer Validating the Formalization of Theories and Algorithms of Discrete Mathematics by the Computer-Supported Checking of Finite ModelsMarch 9, 2017 7 / 17



RISCAL - What does RISCAL do?

RISCAL validates the meaningfulness of definitions, the truthfulness of
propositions and correctness of programs automatically, by evaluation
of terms and formulas and executing programs over all possible inputs

Master thesis is in progress to generate verification conditions and
verify them by SMT solvers

Alexander Brunhuemer Validating the Formalization of Theories and Algorithms of Discrete Mathematics by the Computer-Supported Checking of Finite ModelsMarch 9, 2017 8 / 17



RISCAL - How can RISCAL support a developer?

Supports process of verification

Provides a very intuitive way to
describe the mathematical
theories and algorithms

Allows usage of many symbols
used in mathematics, which
makes the code very easy to
read

Alexander Brunhuemer Validating the Formalization of Theories and Algorithms of Discrete Mathematics by the Computer-Supported Checking of Finite ModelsMarch 9, 2017 9 / 17



RISCAL - How can RISCAL support a developer?

Types: With types we introduce the mathematical objects we are
working on in our further specifications

Predicates: are boolean-valued functions which describe, if a given
property is either true or false for a given input of our types

Functions: are relations between a given set of inputs to the
according set of outputs

Implicit: declares, which predicates a result shall fulfil, but don’t give a
constructive way how to find such a result
Explicit: Explicit Functions describe a constructive way to find such a
result recursively

Theorems: special forms of predicates, for which we predict that all
applications yield ”true”

Procedures: returns a value to a given input, after executing
commands in sequence and evaluating the according expressions

Alexander Brunhuemer Validating the Formalization of Theories and Algorithms of Discrete Mathematics by the Computer-Supported Checking of Finite ModelsMarch 9, 2017 10 / 17



RISCAL - How can RISCAL support a developer?

The definition of a function, predicate, theorem or procedure may also
include (in form of annotations):

preconditions (requires),

postconditions (ensures) and

termination measures (decreases)

RISCAL also aims to give an understanding of the connections of all these
definitions mentioned before.

Alexander Brunhuemer Validating the Formalization of Theories and Algorithms of Discrete Mathematics by the Computer-Supported Checking of Finite ModelsMarch 9, 2017 11 / 17



First Example

A little example out of the handbook to give you an idea, what I’m talking
about.

Alexander Brunhuemer Validating the Formalization of Theories and Algorithms of Discrete Mathematics by the Computer-Supported Checking of Finite ModelsMarch 9, 2017 12 / 17



Expected Results

The thesis results in a collection of formalised mathematical theories and
algorithms including:

Specifications
types, predicates, functions, theorems and procedures
pre-, postconditions and termination measures

Validation outcomes
validation of theorems
validation of specifications
validation of loop annotations

Alexander Brunhuemer Validating the Formalization of Theories and Algorithms of Discrete Mathematics by the Computer-Supported Checking of Finite ModelsMarch 9, 2017 13 / 17



Expected Results

Chosen areas from discrete mathematics:

Set Theory
Operations on sets (∪,∩, {, ...)
Stating rules as theorems (associative law, distributive law,?)
Cartesian product
Cardinality
...

Relation Theory
Compositions of relations
Inverse relations
Relations of special type (reflexive, symmetrical, transitive,...)
...

Graph Theory
Subgraphs, Union,...
Paths and components
Trees
...

Alexander Brunhuemer Validating the Formalization of Theories and Algorithms of Discrete Mathematics by the Computer-Supported Checking of Finite ModelsMarch 9, 2017 14 / 17



Procedure of Specification

1 Define parameters for domain size

2 Introduce types

3 Define functions/predicates with set theory

4 Prove that the definition is equal to the implemented operator (if one
exists)

5 Specify procedure and define invariants with help of defined
function/predicate (or the built-in operator, because of efficiency
reasons)

6 Recursive function definition with specification and termination term
based on defined function/predicate

Alexander Brunhuemer Validating the Formalization of Theories and Algorithms of Discrete Mathematics by the Computer-Supported Checking of Finite ModelsMarch 9, 2017 15 / 17



Demonstration

And here is what I specified for the Bachelor’s thesis until today.

Alexander Brunhuemer Validating the Formalization of Theories and Algorithms of Discrete Mathematics by the Computer-Supported Checking of Finite ModelsMarch 9, 2017 16 / 17



Future Work

Finish set theory,

go on to relation theory and graph theory

there will be another Bachelor’s thesis in the area of computer algebra

Alexander Brunhuemer Validating the Formalization of Theories and Algorithms of Discrete Mathematics by the Computer-Supported Checking of Finite ModelsMarch 9, 2017 17 / 17


