Denotational Semantics

Denotational Semantics

Wolfgang Schreiner
Research Institute for Symbolic Computation (RISC-Linz)
Johannes Kepler University, A-4040 Linz, Austria

Wolfgang.Schreiner@risc.uni-linz.ac.at
http://www.risc.uni-linz.ac.at/people/schreine

Wolfgang Schreiner RISC-Linz

Denotational Semantics

Programming Language

Any notation for giving instructions, e.g.
Pascal, input commands to application pro-
gram, ...
e Syntax
— Appearance and structure of sentences.

e Semantics

— Assignment of meaning to sentences e.g. numbers, func-
tions, machine actions, ...

e Pragmatics

— Usability of the language e.g. application areas, perfor-

mance, ...

Features of every computer program.

Wolfgang Schreiner

Denotational Semantics

Implementation

Two main parts:

1. Input checker module (“Parser”)

e Reads input, verifies that it has proper syntax, generates
internal representation.

2. Evaluation module
e Evaluates input to corresponding output thus defining the
semantics of the language.
The implementation of language is a prag-
matic Issue.

Wolfgang Schreiner 2

Denotational Semantics

Evaluation

e Interpretation

— Execution of the program.

Interpreter defines meaning (by its ac-
tions).
e Compilation

— Transformation of the program into an equivalent version
in the machine language.

Compiler preserves meaning (by notion of
“equivalence”).

Wolfgang Schreiner 3

Denotational Semantics

Formal Specifications

e Syntax: Backus-Naur Form (BNF)

— Correspondence between BNF and parser.

— Input to parser generator.
e Semantics: ?

— Precise Standard for implementation.
— Useful user documentation.
— Tool for design and analysis of language

— Input to compiler generator.

Semantics is much more difficult to describe
(“semantics is everything that cannot be de-

scribed in BNF").

Wolfgang Schreiner 4

Denotational Semantics

Operational Semantics

e Language defined by interpreter (abstract
machine).

e Each construct defined by a transition rule.

e Meaning of a program is a sequence of in-
terpreter states.

P:5 —5—...—=5,
e P ... program
e S, ...interpreter state

Notation for interpreter may be as complex as
language itself.

Wolfgang Schreiner 5

Denotational Semantics

Axiomatic semantics

e Language defined by system of logical ax-
ioms and inference rules.

e Each construct defined by an axiom.

e Not the meaning of a program but its prop-
erties are defined.

1A} P B}

P ... program
A ... precondition
B ...postcondition

Provable properties need not characterize pro-
gram uniquely.

Wolfgang Schreiner 6

Denotational Semantics

Denotational semantics

e The meaning of a program is a (mathemat-
ical) object.

e Each construct is mapped by a valuation
function into its meaning (denotation).

F(P)=D

P ... program
F' .. .valuation function
D ...denotation

More abstract than operational semantics (no
computation steps), more concrete than ax-
jomatic semantics (explicit meaning).

Wolfgang Schreiner 7

Denotational Semantics

Application Areas

e Axiomatic: initial specification.
— Which properties shall language have?
e Denotational: meaning.
— Which semantics provides properties?
e Operational: implementation.

— How can semantics be implemented?

Complementary aspects.

Wolfgang Schreiner

Denotational Semantics

Relationship

[Source Code]

iParsing
Operational Denotational
| Parse Tree]

iCode Generation

[Machine Code] [Denotation]

i Execution A

>[State Transitions] --------
Correctness

Correctness of implementation can be verified
with respect to the denotation.

Wolfgang Schreiner 9

Denotational Semantics

Valuation Function

e Domain: Abstract syntax structures
(“parse trees”) of the language.

e Target: Objects of semantic domains.

e Structural definition (meaning of a tree is
defined by meanings of its subtrees).

A valuation function maps an abstract syntax
into some semantic domain.

Wolfgang Schreiner 10

Denotational Semantics

A Language of Binary Numerals

e Abstract Syntax:

Syntactic domains:
B € Binary-numeral
D € Binary-digit

Syntax rules:
B:=BDID
D:=0I1

e Sentences:

B

Wolfgang Schreiner

11

Denotational Semantics

Meaning of Terminal Sentences

e Subtree: D

0
e Meaning: D(D) = zero

0
e Notation: D [[0]] = zero

Valuation function:
DI[[0]] = zero
D[[1]] = one

Wolfgang Schreiner

12

Denotational Semantics

Meaning of Non-Terminal Sentences

e Subtree: B
D
1
e Meaning: B(B)=D(D)
A
D
A\

o Notation: B[[D]] = D[[D]]

Valuation function:

B[[D]] =D[[D]]

B[BD]| =

(B[[B]] times two) plus D[[D ||

Wolfgang Schreiner

Denotational Semantics

Meaning of Non-Terminal Sentences

Abstract Syntax

B € Binary-numeral
D € Binary-digit
B:=BDID
D:=0I1

Semantic Algebras

Natural Numbers:

Domain Nat = N

Operations zero, one, two, ...: Nat
plus, times: Nat x Nat — Nat

Valuation Functions

B: Binary-numeral — Nat
B[[D]]=D[[D]]

B[[BD || = (B][[B]] times two) plus D[[D |]
D: Binary-digit — Nat

D [[0]] = zero

D[1]] = one

Wolfgang Schreiner

14

Denotational Semantics

Meaning of Sentence

Annotation of abstract syntax tree
gfive

B two

/

Bone

one zero one
D D D

1 0 1

Computation can proceed bottom-up or top-

down!

Wolfgang Schreiner

15

