Structured Global Programming for Communication Behaviour

Marco Carbon&? Kohei Honda Nobuko Yoshida

1Queen Mary, University of London, UK
2 Imperial College, London, UK

Abstract. This paper presents twoftirent paradigms of description of commu-
nication behaviour, one focussing on global message flodsaanther on end-
point behaviours, as formal calculi based on session types.global calculus
originates from Choreography Description Language, a vegbice description
language developed by W3C WS-CDL working group. The endrpeslculus is
a typedn-calculus. The global calculus describes an interacti@macdo from a
vantage viewpoint; the endpoint calculus precisely id@gia local behaviour of
each participant. After introducing the static and dynasgimantics of these two
calculi, we explore a theory of endpoint projection whicliies three principles
for well-structured global description. The theory thefiinkes a translation under
the three principles which is sound and complete in the stregeall and only
behaviours specified in the global description are realsedommunications
among end-point processes. Throughout the theory, undgrlype structures
play a fundamental role.

1 Introduction

Communication-Centred Programming. The explosive growth of Internet and World
Wide Web in the last decades led to, in the form of de factodsteds, an omnipresent
naming scheme (URURL), omnipresent communication protocols (HTTP and fIEpP
and an omnipresent message format (XML). These three elsro@er the key infras-
tructural bases for application-level distributed pragmaing. The software systems
which make use of these and other common web standards fabdisd communi-
cations are often calledeb servicesWeb services are an active area of infrastructural
development, involving two major standardisation bodi®8C and Oasis, and other
private and public organizations.

One of the application domains which can naturally explud infrastructural ba-
sis of web services is the so-called business protocols.sibss protocol is a series
of structured and automated interactions among two or masinbss entities used
for achieving their goals. Business protocols are inhéyeinter-domain, are often
regulation-bound, and demand clear shared understanimgt éts meaning among
multiple organisations with possibly conflicting inter@flumerous business protocols
will be designed and implemented. Some business protouolsas industry standard
will last long once specified; others would arise from tengrpbusiness needs and may
undergo frequent updates. Because of its inherent inggarizational nature, there is a
strong demand for a common standard for specifying welhtted and correct business
protocols.

Global Description of Interaction. One of the standardisatioffterts for a language
to specify business protocols is the Web Services ChorpbgrBescription Language
(WS-CDL) [36], developed by W3C’s WS-CDL Working Group sin2004 in col-
laboration withz-calculus experts as scientific advisors. WS-CDL is a sptitin
language which directly describes global information flamsl their structures, close
to, for example, the standard notation for cryptographatgeols [23], UML sequence
diagrams [24] and message sequence charts (MSC) [18]. eJtilikse predecessors,
in order to enable precise description and specificatioroafgex business protocols,
WS-CDL dofers a fully expressive description language for channetthammmuni-
cation, equipped with standard control constructs (e.gusecing, conditionals and
loops) and is conceived with potential for type-based aheéotormal validation. The
underlying intuition behinghoreographyan be summarised as follows.

“Dancers dance following a global scenario without a singlgnt of control”

WS-CDL is a language for describing such a “global scenddobusiness protocols.
The description can then be executed by individual distebyprocesses without a sin-
gle point of controlt Another significant feature of WS-CDL is its use sessiongor
organizing communication behaviour: at the outset of eahai a business protocol,
a session is established between each pair of communigadities so that involved
communications can be distinguished from any other ingsiof business protocols.

Endpoint Projection. A global description of communication behaviour argualdty o
fers conceptual clarity not found in endpoint-based desions, partly because a global
interaction flowis often the central objective a communication-based apticas in-
tended to realise. Real execution of the description, hew&valways through commu-
nication among endpoints which (as the notion of choredgrajictates) may as well
involve no centralised control. Thus we ask:

How can we project a global description to endpoint processe that their
interactions precisely realise the original global degtion?

Such a projection may be calledpoint projection (EPR}he term originating from
WS-CDL WG.

What are criteria for a good EPP? We naturally desire an EPbetmoundand
completein the sense that all and only globally described behav#rgalised as com-
munications among endpoints. We may regard such an EPPiag g semantics of
a global description.

An appropriate notion of EPP leads to significant enginggtisage of a global
description:

1. (code generation) For a global description with full altfonic details, we can
create a (perhaps multi-languagemplete distributed applicatidoy projecting it
to each of its endpoints.

1 An contrasting idea in web service @gchestrationwhere one master component, “conduc-
tor”, directly controls activity of one or more slave compurts, which is useful in the intra-
organisational applications.

2. (prototype generation) Projection can also be used foegding askeleton code
for each endpoint which only contains basic communicatemeyiour, to be elab-
orated to full code.

3. (conformance) A team of programmers initially agree ohared global specifica-
tion for interactions among endpoints: duriafier programming, each programmer
can check if hehis code conforms to the specification by conformance cimecki
against projection. This scheme also applies to conformahexisting serviceb-
braries to a given scenario.

4. (runtime monitoring, testing and debugging) At runtirmach endpoint can check
if ongoing communications at Kiger site conform to the global description by
checking against its projection to that endpoint. The mairiy can also be used
for debugging and testing existing code.

5. (property validation) Various static analydegical validation can be done for a
global description so that they make sense for each endpwough EPP.

Many of these ideas come from discussions in WS-CDL workimgig and are partly
already realised in an open-source reference implementafiwS-CDL [25]. For ex-
ample, runtime monitoring is a basic expected use of WS-Clith relevance to reg-
ulatory concerns, especially for financial protocols. Hbio&these uses, EPP should
be built on a clear, precise understanding of semanticsodfedland local descriptions,
guaranteeing exact match between them.

This Work. The present paper introduces two typed calculi for intéoacbne being a
distillation of WS-CDL and another an applied version of thealculus, and develops
a theory of endpoint projection. Our central contributigrthie identification of natu-
ral descriptive principles for global descriptions whigtdiice a type-preserving EPP
that is sound and complete with respect to their operatisei@antics. There are three
principles:

— Connectednessa basic local causality principle.

— Well-threadedness stronger locality principle based on session types [2132
15, 33, 35].

— Coherencea consistency principle for description of each partioipa a global
description.

These principles are stipulated incrementally on the bafsigell-typedness. They not
only enunciate natural disciplines for well-structuredlzgl description, but alsofier
gradually deeper analysis of global descriptions. The E&te following shape:

|~ AP IBQICR |-

wherel is a global descriptior, B andC areparticipantsto the protocol and?, Q and
R are projections of onto A, B andC respectively. When applied to well-structured
interactions, the mapping thus defined satisfies the foliguliree properties:

— Type preservatiorthe typing is preserved through EPP.
— Soundnessiothing but behaviours (reductions)lirare in the image of its EPP.
— Completenessall behaviours id are in the image of its EPP.

The EPP theory is intended as a theoretical basis of glolsrigtion languages in-
cluding, but not limited to, WS-CDL. The theory opens a cahbetween global de-
scriptions and accumulated studies on process calcuiyedy the exploitation of rich
theories for engineering concerns. A version of EPP thedliybe published as an
associated document of WS-CDL 1.0, and will form a part of paresource imple-
mentation of WS-CDL [25].

Related Works. As far as we know, this work is the first to present the typedwal
lus based on global description of communication behayiotegrated with the the-
ory of endpoint projection. Global methods for describirmgrenunication behaviour
have been practiced in severaffdrent engineering scenes in addition to WS-CDL
(for which this work is intended to serve as its theoretiaadierpinning). Representa-
tive examples include the standard notation for cryptogi@protocols [23], message
sequence charts (MSC) [18], and UML sequence diagramsT24ke notations are in-
tended to &er a useful aid at the desifgpecification stage, and do ndter full-fledged
programming language, lacking in e.g. standard controtstires angr value passing.
Petri-nets [34] may also be viewed a$esing a global description, though again they
are more useful as a specificatianalytical tool.

DiCons (which stands for “Distributed Consensus”), whishiridependently con-
ceived and predates WS-CDL, is a notation for global desoripand programming of
Internet applications introduced and studied by Baetonahers [3]. DiCons chooses
to use programming primitives close to user’s experientkenweb, such as web server
invocation, email, and web form filing, rather than genemheunication primitives.
Its semantics is given by either MSCs or direct operatioaaiantics. DiCons does not
use session types or other channel-based typing. An aratifghe theory of endpoint
projection has not been developed in the context of DiCons.

The present work shares with many recent works its dired¢tesrds well-structured
communication-centred programming using types. Pict j28he programming lan-
guage based on thecalculus, with rich type disciplines including linear apolymor-
phic types (which come from the studies on types forshmalculus discussed in the
next paragraph). Polyphonidi{4] uses a type discipline for safe and sophisticated ob-
ject synchronisation. Compagnoni, Dezani, Gay, Vascascahd others have studied
interplay of session type disciplines withi@irent programming constructs and program
properties [9, 12,13, 15, 33, 35]. The EPP theoffis a passage through which these
studies (all based on endpoint languages and calculi) caafleeted onto global de-
scriptions, as we have demonstrated for session types prédsent work. In the context
of session types, the present work extends the sessionustugith multiple session
names which is useful for having parallel communicatiosida a session.

Many theories of types for the-calculus are studied. In addition to the study of
session types mentioned above, these include fopiput types [21, 27], linear types
[14, 19], various kinds of behavioural types [2, 5, 6, 16,31/,32, 37] and combination
of behavioural types and model checking for advanced beheai analysis [29], to
name a few. Among others, behavioural typéeioan advanced analyses for such phe-
nomena as deadlock freedom. We are currently studying hesetadvanced type-based
validationon techniques on the basis of the present singssien type discipline will

lead to dfective validation techniques. Again these theories woelcbime applicable
to global descritpions through the link established by tRéEheory.

Gordon, Fournet, Bhargavan and Corin studied securigtedlaspects of web ser-
vices in their series of works (whose origin lies in the s@geenhanced pi-calculus
called spi-calculus [1]). In their recent work [7], the aoith have implemented part of
WS-Security libraries using a dialect of ML, and have showwhnnotated application-
level usage of these security libraries in web services @artalysed with respect to
their security properties by translation into thealculus [8]. The benefits of such a tool
can be reflected onto the global descriptions through theryhef EPP, by applying the
tool to projections.

Laneve and Padovani [20] give a model of orchestrations &f sezvices using an
extensions ofr-calculus to join patterns. They propose a typing systemgfi@ranteeing
a notion of smoothness i.e. a constraint on input join pastsuch that their subjects
(channels) are co-located in order to avoid a classicalajlobnsensus problem dur-
ing communication. Reflecting the centralised nature ohestration (cf. footnote 1),
neither a global calculus nor endpoint projection is coeed. A bisimulation-based
correspondence between choreography and orchestratibbe context of web services
has been studied in [10] by Busi and others, where a notiotatd sariables is used in
the semantics of the orchestration model. They operafpnalate choreographies to
orchestration. Neither strong type systems nor discigliioe end-point projection are
studied in their work.

Outline. Section 2 previews the key technical ideas using concretmples. Sections
3 and 4 outline the global and endpoint calculi, introdudingir static and dynamic
semantics. Section 5 develops the theory of endpoint piojecSection 6 summarises
further results and applications of end-point project®action 7 concludes with further
topics. The appendix presents a larger example illusgdtow the endpoint projection
concretely works. Many examples and the full technical tguments of the theory are
found in the full version [11].

Acknowledgements. The present work is part of ongoing collaboration betweerCN3
WS-CDL working group and a team afcalculus experts, led by Robin Milner. Its de-
velopment has benefitted from the extensive discussios\i@&-CDL working group
members. In particular we thank Steve Ross-Talbot and GeowBfor our many fas-
cinating (and ongoing) conversations.

2 Preview of Key Technical Ideas

2.1 Buyer-Seller Protocol.

This section gives an outline of key technical ideas. Thhmug we consider a simple
business protocol from [30], which we call “Buyer-SellepRycol”, and its variations.
In the core protocol, the participants involved are a Buge®eller and a Shipper. We
first describe the protocol in the following sequence diagra

Buyer Seller Shipper

qguoteCh

Quote

Accept
Choice{ Reject

delivCh
DeliveryDetails

DeliveryDetails

In words, the protocol consists of the following actions.

(1) Buyer asksSeller, through a specified channel, tffer a quote (denotegliote) for
buying a specific good;
(2) Seller replies with a quote;
(3) Buyer then answers with either an accept or a reject.
(4) Inthe case of acceptance,
(4-1) Seller sends the order to thehipper;
(4-2) Shipper sends the delivery details back to theller.
(4-3) Seller forwards them tduyer: the protocol terminates.
(5) Inthe case of rejectiarthe protocol terminates.

Note the diagram is ambiguous on the branching Actions (d) (&) the purpose of
such diagrams is tofter an informal overview rather than precise specificatioavN
ertheless, protocols tend to be complex, with nondetestiadnd conditional choices,
loops, timeout and other elements. This motivates a needsghtactic means.e. a
language, for describing such protocols.

Some of the central elements of such a language (WS-CDL isxar@ple) may be
determined by observing that the whole intention of spégifysuch protocols is tm-
stantiate it repeatedlyncluding its shared usage (e.g. the Buyer role can be as$bmn
any potential and possibly concurrent buyers). This carsitbn leads to the following
two simple engineering principles.

Service Channel Principle (SCP): Invocation channels (e.g. a channel at wiictyer
first communicates t8eller, similarly Seller to Shipper) can be shared and invoked
repeatedly.

Session Principle (SP):A sequence of conversations belonging to a protocol should
not be confused with other concurrent runs of this or othetgmols by the par-
ticipants: in other words, each such sequence should forenlagical unit of a
conversation, or gession

(SCP) does not preclude a channel is only known to a closed nunflgarticipants. It
corresponds to a replicated channel in #healculus, or, more accurately, a replicated

channel which is not prefixed by other input prefixes (sucmaless are calledniformly
receptivein [31] andserver channels [5]. (SP) can have complex forms, but a most
basic one is a dyadic one which allows simple and robust tipptraction with tractable
type checking [12, 15, 35F These two principles are central for the whole technical
developmentin the paper.

2.2 A lLanguage for Global Description of Communication.

The following presents the full description of Buyer-SelRrotocol in theglobal cal-
culus whose syntax and semantics we shall formally introdue.lat

1. Buyer — Seller : quoteCh(v).
2. Seller— Buyer : 5{Quote, 300 x). {
{Buyer — Seller : s{Accept).
Seller — Shipper : delivCh(rt).
Shipper— Seller : t(DelivDetails, Vgetails, Xdetails)-
Seller— Buyer : (DelivDetails, Xgetails, Ydetails)s O}
+
{Buyer — Seller : s(Reject). 0}
}

©oON O A®

Line 1 describes Action (1) in the previous informal destap of the protocol. The
guoteCh is aservice channelvhich may be considered as a publicly known URL for a
specific service. The invocation marks the start of a sedstween the buyer and the
seller: thev-bounds is asession name fresh name that will be used for later commu-
nication in this session. Unlike standard process calthgi syntax no longer describes
input and output actions separately: the information ergleds directly described.

Line 2 describes Action (2) in the scenar8gller’s reply toBuyer. The session has
already been started and now the two participants commignising the session name
s. In addition, three factors involve@uote identifies the particular operation used in
this communication (i.e. request of quote), 300 is the geete bySeller; xis a variable
located aBuyer where the communicated value will be stored.

Lines 38 describe Action (3), wherBuyer communicates its choicéA¢cept or
Reject) to Seller throughs. Two series of actions which follow these choices are com-
bined by+ in Line 7. If Accept is chosenSeller sendsShipper the Buyer’s details
via the service channelelivCh of Shipper, creating a fresh session namg.ine 4).
Then in Line 5,Shipper sends back the shipping details througFkinally Seller for-
wards the details t®uyer in Line 6, where the protocol terminates. In LineByyer
communicatefeject, in which case the protocol immediately terminates.

The code abovefters a precise global description of the informal scenarimvab
drawing on ECP) and SP). Sessions fber logical grouping of threads of interactions,

2 In implementations of web services, sessions are implezdensing so-calledto-relation
identities (which may be considered as nonces in cryptographic prépc®his and the
channel-based representation usually employed in they sifidession types are logically
equivalent, as discussed in [1].

where each thread starts with a procedure-call-like senvicocation. This last feature
can be seen more clearly in the following refinement of thescalabve.

Buyer — Seller : quoteCh(v 9).
rec X. {
Seller— Buyer : {Quote, g, X).
if reasonable(X)@Buyer then
{Buyer — Seller : s(Accept).
Seller — Shipper : delivCh(vt).
Shipper— Seller : t(DelivDetails, Vgetails> Xdetails)-
Seller— Buyer : (DelivDetails, Xgetails Ydetails: 0}
else
{Buyer — Seller : (Reject). q:=q—1@Seller. X} }
}

R
PBom~NooarwNp

Above if Buyer chooseReject, the protocol recurs to Line 3 after decrementing the
quote. In Line 4, we assume a unary prediaatesonable(X) evaluated aBeller (*@”
indicates a location, similarly in Line 10). Note the sessimtation makes it clear that
all Quote-messages fronseller to Buyer in the recursion are done within a single
session. Later in this preview we shall present another pi@mvhere such session
information plays a crucial role in tractable endpoint picijon.

For comparison we present the endpoint counterpart of thiesiimple global code.
The first is the endpoint code 8luyer.

Buyer[QuoteCh(vs). s> Quote(X). {
{ s <1 Accept. st> DeliveryDetails(Ygetails). O } +
{s<tReject. 0} }]

Above Buyer[P] indicates a participant (a named agent) whose behaviagivés by
P. TheSeller's code is given as:

Seller[! QuoteCh(s). S <1 Quote(300). {
{ s> Accept.

DeliveryCh(t). t > DeliveryDetails(Xgetails)-
S < DeliveryDetails{Xgetai1s)- 0} +
{Reject.0}}]

The code ofShipper is similar. Observe endpoint descriptions clearly depictal
communication behaviour. However they do not directly déschow interaction pro-
ceeds globally, which may often be the central concern otitreégners and users of a
communication-centred application. The two service cletsQuoteChandDeliverCh
are replicated and ready to receive invocations, folloWBgP).

As may be seen above, extraction of behaviour from a globsdrifgtion relies on
session information. We illustrate this point further. Gmer the following snippet of

global description, whera andb are used to indicate the lack of session information.

Buyer — Seller : a(QuoteReq, pnamd, pnamd).
Seller— Buyer : b{QuoteRes, quotel, quotel).
Buyer — Seller : a(QuoteReq, pname, pname).
Seller— Buyer : b{QuoteRes, quote, quote). |

Here Buyer requests a quote twice: it may look that the behaf Seller is such that
it allows a consecutive quote requests in one go. This amiiiesolved if we put a
session information:

Buyer — Seller : ch(s)(QuoteReq, pnamd, pnaméd).
Seller— Buyer : s{QuoteRes, quotel, quotel).
Buyer — Seller : ch(t){QuoteReq, pname, pname).
Seller— Buyer : t{QuoteRes, quote, quote?). |

1)

(Above we use a construct which combines a session initigia an in-session com-
munication. This is convenient for practice: our theomtizeatment in the present
paper separates these two for clearer formal presentatitimno loss of generality via
a simple encoding.) Using the session information, we infer

Ich(s)[(QuoteReq)(pnameg.5QuoteRes)(quote.P]

Note the endpoint behaviour would have been quiiedint if we represent all request-
replies as belonging to a single session.

2.3 Disciplines for Global Description.

Even if a global flow of interaction is the primary concern of @plication designer,
in implementation, a global scenario has to be realised &yiliuted end-points com-
municating with each other. Thus we need to bridge the wdrlglabal description to
endpoint descriptions. Our ultimate aim is to have globalcdgtions such that their
operational content, or endpoint realisation, is transpgfrom these descriptions.

Having such a bridge is non-trivial because a global cakallowsdescription of
communication behaviour that does not make sense at endpaérthe first such issue,
let us consider the following code snippet for global dgstn:

Buyer — Seller : chy(v s).
Shipper — Depot : chp(vt). 0

Above Shipper is supposed to contadiepot only after Buyer performed a request
to Seller. Implementing such a system demar8tspper is notified once the initial
communication is performed, i.e. there is an implicit conmication fromSeller to
Shipper:

Buyer — Seller : chy(v S).
Seller — Shipper : ch(v s).
Shipper — Depot : chp(vt). O

With this insertion, the description is realisable purdigotugh explicitly specified mes-
sage exchanges. The criteria which says each participenbaly as a result of its local
event (such as reception of a message) is calteshectednessVe shall give its formal
definition in Section 5.

Connectedness is an intuitive idea for well-structuredglaescription. The next
condition is more subtle. Consider the following (conndgiateraction:

Buyer — Seller : chy(v s).
Seller — Shipper : chp(vt).
Shipper — Buyer : chg(v u).
Buyer — Seller : (op, Vv, X). |

Above we assumBuyer offers a service channehs which is useful forShipper. We
claim that this global code (regardless of ensuing intésacat |) is unrealisable at
endpoints, at least under the natural type discipline ax@ coganisation.

The first action tells that there is a threadBinyer which invokesSeller. This thread
becomes inactive in the second line. In the third line, aiseratchs in Buyer is in-
voked. In the final lineBuyer communicates t&eller via a session namegopened in
the first action. So, at the endpoint, we should have thevatlg two chunks of the
code:

chy(vs). S<op(v).P | cha(t).Q

The first chunk is for the initial invocation and ensuringeption ofop in the same
session, while the second is a servicelat(by (SCP) this channel should be ready to
receive invocations). Note that, By op(v) belonging to a sessios) this action cannot
be located undezhs. On the other hand, the code ®éller should be:

I chy(S). cha(vt). t > op(X)
Finally, the code oShipper becomes:
I chy(t). chs(vu).R

We can now have the three endpoint processes get engageshinwucations: First,
Buyer invokeschy, thenSeller invokesch, of Shipper: up to here the interaction follows
the original global scenario. However, at this point, thearcs > op(X) is free to react
with its dual actiors < op(v), beforeShipper invokesSeller’s the other component, the
service aths. Thus the sequencing in the global description can be édlat

The fundamental issue here is that the given global codereessa false (unrealis-
able) dependency among actions: the last action belongthtead which started from
the invocation othy, while the description says it should take place as the tiesilt
of the third action at a distinct thread which has been opdyetie invocation athg.
If a global description is free from such false dependeneysay it iswell-threaded
We shall see in Section 5 that checking well-threadednesisigle and mechanical.

Well-threadedness not only eliminates false dependentglba allows consistent
extraction of threads (i.e. sequences of actions) fromargglobal code. These threads

10

become the constituents of endpoint processes in EPP. Eievigi-structuring princi-
ple is concerned with this composition. It is often necestamergethreads to obtain
the final endpoint behaviour of a single servicEonsider the following parallel com-
position:

Buyer — Seller : ch(v s). Seller— Buyer : s(op1, €, X1). I1 |
Buyer — Seller : ch(vt). Seller— Buyer : t{op2, €, X2). |2

whereop;, # op,. HereBuyer invokesSeller's service athtwice in parallel. Now con-
sider constructing the code for this service at chawchethen we need to merge these
two threads into one endpoint behaviour. But the global idietson is contradictory,
since in one invocation the service reacts v, while in another the service reacts
with op,. The description is not self-consistent.

A central issue is that, in a global description, the desioniys of a single endpoint
behaviour (especially a service at a service channel) catéigered in dferent por-
tions of the codeThus, without these scattered descriptions being camistith each
other, we cannot merge them into a single behaviour. We cal snergeabilityco-
herencecoherence is not simply about identity of the behaviouinabe above case,
since distinct input branches may be described ffedént portions of a global code.
The details are given in Section 5. Coherence can again lmketienechanically.

With coherence as the final well-structuredness conditieecan now project a
global code to endpoint behaviours that precisely realiseotiginal global scenario.

3 The Gobal Calculus

3.1 Syntax

The syntax of the global calculus is given by the followingBIN I/, . . . denoteterms
of the calculus, also callethteractions Below ch,ch' ... range overservice chan-
nels intuitively denoting the shared channels of (web) seisg, . .. range oveses-
sion namess indicates a vector of session namAsB, C, . .. range oveparticipants

XY,z ... over local variables in each participang; X’, ... overterm variables and

e €,...over arithmetic and other first-order expressions.

| == A->B:ch(»9).I (init)
| A—>B: s{op, € y). | (comm)
| X@A :=el (assign)
[ill2 (par)
| if e@A then 14 else |5 (ifthenelse)
[11+ 12 (sum)
[(v9) | (new)
| X (recvar)
| uX. 1 (rec)
|0 (inaction)

3 This merging already takes place in the extraction of codé)imbove, though in a trivial way.

11

Table 1 Reduction Relation for the Global Calculus

_ o =0[x@B—vVv] ocre@Alv

N A S B e = @09 ™ o ASB:sop, e 0. 1) = @,)
(@ Ase) :(U(TE(XCS&A:e\./]I) i:;@f;u * (GSw) (0. 11 +I ':2)1’—’2(“")

(O (o egmtan - e 177 O (o oA en veoe 17 17
P IS T T R T 057)

(O S S . 1) (S =S

The term (init) denotes a session initiation Ayo B on service channalh with fresh
session channeksahd continuation. The interaction (com) is the in-session commu-
nication over a session chanrgeNote thaty is free and does not birld The operators
| and+ denote respectively parallel and choice operators). | is ther-calculus-like
name restriction, binding in 1. (ifthenelse) and (assign) are the standard conditional
and assignmene@A indicateseis located aty). uX. | is recursion, where the variable
X'is bound inl. 0 denotes termination. The free and bound session channgkgEan
variables are defined in the usual way.

The presented syntax is intended as the minimum one for ptiegeexamples and
for the EPP theory. Section 6 discusses natural additigmastic constructs.

3.2 Dynamics

The dynamics of the global calculus is given by reductioatieh close to that of im-
perative languages. stateo- assigns a value to the variables located at each participant
We shall writeoc @A to denote the portion af local toA, ando[y@A — V] to denote a
new state which is identical wittr except that~” @A(y) is equal tov. The reduction is
the binary relation» generated by the rules in Table 15%(1) — (o”, I’)” says that
| in the stater performs one-step computation and becomiegth the new state'.
Rule (Ixit) is for session initiation: afteA initiates a session witlB on service
channelch, A and B shares’locally (indicated by bindingv3)), and the next is
unfolded. The initiation channeh will play an important role for typing and the end-
point projection later. (Gm) is a key rule: the expressiamis evaluated intor in the
A-portion of the stater and then assigned to the varialddocated atB resulting in
new the stater[x@B +— v]. Note that the same variable (say can be located at
different participants, so that@A(x) ando@B(x) are distinct. Similarly to the session
initiation, the session channeis attached. The rule {8uct) makes use of structural
congruence. The structural congruence relation is the Easyruence relatios on |

12

Table 2 Typing Rules for Global Calculus

I, ch@B:(far | >A-5[BA]:«

(G-Tlnr) I, ch@B:(Yar A— B:ch(vd.l>A

I'rl>A-5[ABl:a; Tre@A:0; T+ x@B:0; se(f jel

-T
(G-TCow) I' - A-B:sop, & X).1 > A-5[A B]:s <« Zic;0pi(6). a;i
(G-TCoul)FHDA-%[B,A]:aj I're@A:0; T+x@B:9; se{§ jel
- MIN
v ' + A-B: S(Opj, e X).l > A'g[B,A]:SP EiEJopi(Hi). 07
I'Xx@A:0 Tre@A:0 TrI>A
-TA:
(G-TAsa) I'rx:=e@A. |l > A
IF'rlhA TrIb>A I're@A:bool TrI;>A TrIZ>A
-T -Tl
(G-TSM) — oA (G fe@Athen I else I, & A
IF'rli A TrIx> A, Trl> A, §S5[AB]:a
G — T e aen, . CTRY Tr09Toa 550
IF'rl>A, §S5:1 TF'rlI> A &L
-TRes2 -TRes3) ——mM8M@™——
© g)Fr(vs)I|>A, §%:L © s3) rr(vsl>A
- X:Arl>A I', X:A well-formed
-TRe¢) ——mMm8M88— -TV.
TR Toxiea CTW T3 arxea

I' well-formed Vi # j.{§} N {5} =0
'+ 0> U §[A, Bi]end

(G-TZero)

such thaf and+ are commutative monoids and such that it satisfies alpheaecsion
and the rulgys) I1]l; = (vs) (14]12) for s ¢ n(l2).
Consider, for instance, the interaction

Buyer — Seller : QuoteCh(v s).
Seller — Buyer : {Quote, 30Q x). |’

and let us evaluate it in the stateBy applying rule (kit), we get the paird;, (vs) Seller —
Buyer : (Quote, 300 X). 1"). Now, by applying rules (&) and (Gw) together in the
stateo- we get the pair€[x@Buyer — 300], (vs) I').

3.3 Typing

We use a generalisation of session types [15] as the typipliliecfor the global calcu-
lus. The grammar of types follows.

a = SbEiopi(Hi).a/i | S<Eiopi(0i).a/i
| ala | end | ut.a | t

13

whered, ¢, ... range ovewalue typesa,«’,... are session typess » Xiopi(6). ai

is a branching input typeat session channe} indicating possibilities for receiving
any of the operators fromp; (which are pairwise distinct) with a value of tyge

s « Xiopi(6). ai, a branching output typat s, is the exact dual of the above. The
typeay | a2 is aparallel composition ofr; and a,, abstracting parallel composition of
two sessions. We tago be commutative and associative, wétld, theinaction type
indicating session termination, being the identity. We dathsession channels in
and those iny, to be disjoint: this will guarantee a linear use of sessioancielst is
atype variable while ut.« is arecursive typewhereut binds free occurrences tfin

a. In recursive types, we assume each recursion is guar@ediniut.a, a is ann-ary
parallel composition of inpydutput types. Recursive types are regarded as regular trees
in the standard way [26].

Note that session channels occur free in session typesisthiscessary to allow
multiple session channels to appear in a single sessionratigaThus, we can faith-
fully capture the behaviour of web services where it is gassio exchange dierent
data simultaneously, leading to a generalisation of sedgjues in the literature. Let us
show a simple example:

S 4 Quote(int). end | S « Extra(String). end

Here a participant is sending a quote (integerpsand extra information about the
product ats’ in a single session: without using distinct session chaneb commu-
nications can get confused.

The duality for session types plays the key role to guarashyadic interaction [15].
Theco-type or dual, of a, writtena, is given as follows.

s < Ziopi(6). i = s » Ziopi(6). @i
s» Ziopi(6). @i = s 4 Ziopi(6). @i
ptoa =ut. t=t end = end

For instance, the co-type af- Quote(int). end is s « Quote(int). end, exchanging
input and output.

Each time a session is initiated via a service channel,@es$iannels are freshly
generated. Thus, the interface of a service should indecatztor of session names to
be exchanged, in addition to how they are used. This is repted by aservice typein
which concrete instances of session names in a sessionrypbstracted, writtensfa
wheresis a vector of pairwise distinct session channels covetirggasion channels in
a, anda does not contain free type variables) lfinds occurrences of session channels
in §in «, which induces the standard alpha-equality.

A typing judgementas the following form:

r-1 o> A

whererl is service typingandA session typingA maps session channels to their loca-
tions and session types ahidbcated service channels and recursive variables to ervic
types and session typing, respectively. The grammar of@#session typings follow.

14

Below in § A, B] we assume\ # B.

I :=0|T, ch@A:(§a |T, X@A:0|T, X:A
A :=0|A JAB]:a|A 8L

In a service typing, three forms of assignments are ud&@A: (5)a says that a service
channelchis located atA and dfers a service interface represented by a service type
(9a; x@A: 0 says that a variablelocated atA may store values of typ# finally, X: A

is for recursion i.e. when the interaction recursdpthe behaviour will own a session
typing A.

A session typing uses the primary form of assignnmegAt B] : @ which says that a
vector of session channetsall belonging to a same session which is betwaend
B, has the session typewhen seen from the viewpoint &. We writeI';, Tz (A1, Az)
if there is no overlap between the free variaiesnes inl; (A1) andI; (Ap). The
notationfsc(A) denotes the set of free servisession channels if.

The typing rules are given in Table 2. Rule (G-d@ states that should contain a
session typer; betweerA andB such that its session channels conifthe commu-
nicated value is typed in the sourceX) while the variablex is typed in the targetR),
with the same typé;. In the conclusion, a branching type should include the aioer
op; whose value type ig;. In (G-TCowm), the session type in focus is given with the
direction fromAto B, i.e. it abstracts the structure of the interaction in tleissson from
the viewpoint ofA. While this is consistent, we may also regard it from the rezre
viewpoint B). Thus we have the symmetric variant (G-dM@nv).

Rule (G-TRR) uses the linearity condition found in [15]. The the operatis well-
defined whenever the linearity condition is satisfied and@hshats[A, B] : @ € AjeA;
iff either

1. é[A,B]Za’lEAl,ﬁA,B]Za2€Azanda’=a’1|a’2;
2. §A B]: @ € Ay and{§} Nnfsc(Az) = 0, or its symmetric case;

Note diferent session channels can be used in parallel, while sechiannels can be
shared by multiple threads of interactions.

Rule (G-Thir) types session initiation. Sineds to be abstracted as session chan-
nels belonging to a single session, we demand that thereli@a: ()« in the typing
environment. Sinces is directed fromB to A, @ designates a session type seen from
B’s viewpoint resulting ins[B, A] : @ where bothA andB need be mentioned since a
session is always between two parties. Note the®B : (S)« is also assumed in the
premise sinceh may have already been used elsewhere (as a service channst ca
shared).

In (G-TResl), hiding of session names is introduced after the sessitiation so
that they can no longer be abstracted by (Gsil)l « is no longer necessary, so we
replace it with L. Rule (G-TRs2) is used for removing unnecessary hidden session
names one by one: wheris'empty, we take it f§ with (G-TRes3).

In Rule (G-TZro) we demand each session type used in the conclusion is a dis-
tinct vector of session channels afids well-formed. A service typé& is well-formed
whenevecch@A; : (§)a; € T (i = 1,2) impliesA; = Ay and §)a: = (%)az. Moreover,
X@A; :6;, X:Aj e T'implies; = 6, A1 = A, andA; = A,. Similarly, a session typing

15

is well-formedwhen for all$i[Ag, Bi]ar and$;[Az, Bo]az in A such thaf{g;} N {5} # 0
we haves) = $, A; = Ay, By = By anda; = as.

Proposition 1. T + | > A impliesT" andA are well-formed.

As a simple example, we type the Buyer-Seller interacti@ervice channé)uoteCh
is assigned with service type
(s) s €4 Quote(integer). (
s » QuoteAccept(null). s « DeliveryDetails(null). end +
S » QuoteReject(string). end)

Instead, service chann@kliveryCh has service type
(t) t « DeliveryDetails(string). end

Denoting two types byd)a; and (), respectively, we can prov@uoteCh: (S)as, DeliveryCh:
Oaz v | > 0.

The type discipline has also a minimal typing. To formulaiaimality, we use the
inclusion ordering<, defined based on simulation as in [13] with the key justifyin
rules being:

JcJ VieJ.cxiSai'
SP Zicjop(h). i < S» Zicyop(6h). @
JcJ Vieda <af

S 4 Zicjop(6). ai < s <4 Zicyop(6h). of

The relation< is extended pointwise to session typings and service typilmgbrief,
a < « indicatesa is the result of cutting f some branches from’ at zero or more
points. We now observe:

Proposition 2. Letl’ + | > 0 for somel. Then there existEy such thatly + | and
whenevel” + | > @we havdy <T".

Theorem 3 (Subject Reduction).Assumé’ + o~. Thenl" + | > A and(o, 1) — (o7,1")
implyl' + ¢@ andT” + | > A’ for someA’ such thatisc(A”) c fsc(A).

4 The End-Point Calculus

4.1 Syntax

The end-point calculus is an applied version of Akealculus [22]. The main syntactic
terms areprocesse$P, Q, ...) andnetworkg M, N, ...) and are defined by the following
grammar.

P:= 1ch(®.P | ch(vd.P | s Ziop(%).P;
|S<op®.P | x:=e. P | ifethenP;else P,
|[PeP | PIQ | (w9P | X | uX.P | O

N:= ALP], | NIN | 9N | e

16

Table 3 Semantics of the End-Point Calculus

Al'ch(®.P|P], 1 B[ch(v9.Q1Q 1 — (v§ (Al!ch(®.PIPIP], IB[QIQ])

(EP-Intt)

ocrelv

EP-G
(W Al st Ziop;(%).Pi| P], B[S<0p(&)QIQ [= ALl Pj | P loixo) | BIQIQ I

ocrelv

EP-AssiGN
() AX=ePIP T, = ALPTP Lo

The first two productions for processes describe terms nfeasession initiation and
the following two are for communication. This is in the sty@®[15], excepty; in the
second construct (branching input) dotinduce bindersx := e. P assigns a value

to x in its store and then continues BsThe rest is all standard. Networks are paral-
lel composition of participants. The latter are represeiig the termA[P], which
indicates a participamt whose behaviour is given By and whose local state is.

4.2 Reduction

The reduction semantics for the end-point calculus follbesr-calculus. We report
the full definition in Appendix B, but list the three key ruliesTable 3.

(EP-Init) defines the session initiation: two participaktand B will synchronize
starting a session whenever they are executing a serffiee ¢h(8). P and a request of
servicech(v3). Q respectively. The synchronisation will result into shgrresh session
namessiocal to A andB. These session names are then used in (E¥)-€@r commu-
nication. In (EP-Gwm), we use assignment to local variables rather than valuginps
for correspondence with the global calculus. (ERié~) updates the store associated
in each participant.

4.3 Session Types for the End-Point Calculus

As mentioned above, the aim of the end-point calculus iswe gimodel on which we
can project the global calculus. For this reason we needftoedsession types [15] as
well. We use the same set of session and service types asthed galculus.

In the end-point calculus, we have the two type judgements

F'raPD> A 't Mp> A

respectively for processes and netwoikéservice typing) and (session typing) above
are given by the following grammar.
I 2= 0|T, ch@A: (da|T, ch@A: Do
IT, x@A:0|T, X: A
A:=0 | ANS@A:a | A'S: L

17

Table 4 Session Types for Processes in the End-Point Calculus

KcJ ses§ FI—XJ':HJ' rl—APjDA'g@A:QJ‘
I + S>> Zicjopi(%).Pi > A-3@A: s» Zickop;(6). @i

(EP-TB)

jeJCK Tre:6 I raPD> A-S@A: ¢
I' Fa S<opi(e).P > A-S@A: s < Zix0p;(6). ai

(EP-TS)

I' ta P > 83@A:«

(EP-TSRY) @A (90 ra Tch(®. P = 0

[, ch@B:(da +a P > A-3@A: @

(EP-TR:) — —
I, ch@B:(8a ra ch(v8).P > A

FiI-APiI>Ai I =<xI', A xA,

EP-TR
(®) F'raP1 | Qo> A1 OA;

As before, we stipulate that, whenever we write &g1I',, there areno free channel-
g/variables shared between two typings. The selected rutdbddyping processes are
given in Table 4.

The rule (EP-TRBancH) for inputin-session communication involves branchintwi
distinct operators: the typing can have less branches tiereal process, so that the
process is prepared to receive any operator specified inyfie Rule (EP-T&) is
its dual: the typing can have more branches than the reakpspso that the process
invokes with operators at most those specified in types. Quindp(EP-TB) and (EP-
TS), an output never tries to invoke a non-existent opticitsimatching input.

Rule (EP-T&rv) is for typing the inputting side of initialisation. Note vz not
allow those session channels other than the target oflisé@teon to be present as the
session typing in the premise: this preveinte session channels to be under the repli-
cated input, guaranteeing their linear usage. The typitigarconclusion means (by our
convention) thath or ch does not occur ifi. The outputting side of initialisation (rule
(EP-TR:q)) is analogous, except that the linearity constraint needbe specified. We
assume thaf and B are not identical. The fact we allosh@B : (8)a to occur in the
premise means an invocation to a service can be done as maeyg/ds needed (as far as
it is type correct). (EP-TAR) uses the operatorssande: A; < A, means two channels
of the same domain have a dual type each other [15]; and th#& ofshe composition
of the dual types become, which denotes the same channel cannot be composable
further. This operation guarantees a linear use of sessianrels. The full definition
can be found in Appendix B.

As an example, we type the end-point process of the sellen, iseSection 2. If we
consider the service types){: and ¢)a in the previous example in Section 3.3, we
have

QuoteCh:(s)a1, DeliveryCh:(t)a, + Seller[Protocol], > 0

18

Note that, in the end-point types the service chamraiveryCh is overlined: this is
because the channel is located at the shipper’s. This isaattse in the global calculus
as we only have a global view of channels. With well-formexngmilar to the global
calculus, we have:

Proposition4. T + M > A impliesI" andA are well-formed.

For the end-point calculus, we consider a subtyping refatio session types following
[13]. # This relation plays a basic role in our subsequent techmieaélopment. The
subtyping is writtene < B. Intuitively, a1 < a» indicates thaty; is more gentle, or

dually a» is less constrained, in behaviour. The subtyping relattogiven based on
simulation following [13], whose key justifying rules are:

JDJ a <P
S» Ziciop(6). @i < S» Zicyop(6). B

which says that if the initial inputfers more options, and if subsequent behaviours are
more gentle, then it is more gentle.
Jc¥ o<
S €4 Zicjop(6). i < s« Zicyop(6). Bi

which says that if the initial output has less emissions dralibsequent behaviours
are more gentle then it is more gentle. Note this relatiorifiecent from the inclusion
ordering<in §3.3.

The following result says that we can always find a represieetyping for a given
process, and, moreover, we can do fiedively. Such a type is minimum among all
assignable typings w.r.t. the subtyping relation, so thatall it theminimal typingof a
given term. Below and henceforth we write- M for ' + M > 0, similarly forT" +a P.

Definition 5 (minimal typing). LetTo + M. We calll’y the minimal service typing of
M whenever for all” such thatl” + | we havel'y < I', wherex is taken pointwise at
each channels.

Proposition 6 (existence of minimal typing).For each typable M, its minimal service
typingI'p exists. Further suchy is algorithmically calculable from M.

Theorem 7 (subject reduction).f T'+ N> Aand N— N’ thenl' v N’ > A.

Unlike the global calculus, the untyped end-point calcidaa have communication
error. Its absence is guaranteed by the type system. Letyusl $@s acommunication
error when:

M = C[A[s>> Ziop;(%).Pi|R]+|B[S < op(€).Q|S]]
where in both casesp ¢ {op;} andC[] is a reduction context (i.e. a context whose hole
is not under a prefix). That idyl has a communication error when it contains an input
and an output at a common channel which however do not maitgbarator names. A
basic corollary of Theorem 7 follows.

Corollary 8 (lack of communication error). If I' - Ni> A and N—* M, then M never
contains a communication error.

4 The direction of the subtyping is converse to (and consistéth) [13].

19

5 The End-Point Projection

This section establishes a formal link from the global chisudo the end-point calcu-
lus: a global description which conforms to the three prapsyconnectedness, well-
threadedness and cohererean be mapped to the end-points preserving the three desir-
able propertiestype preservationandsoundnesandcompletenessf the operational
semantics. Throughout we only consider well-typed term$éth the global and end-
point calculi.

5.1 Connectedness

To define connectedness, we need to say which participaiat@s an action in a given
interactionl: this participant should be the place where the precediegtevappens.
First assume we annotate recursion variable with a paaitipame, e.quX”. | etc.

Definition 9 (initiating participants). Given a hiding-free interaction I, itgitiating
participantsdenotedop(l), is inductively given as follows:

(A} ifl ez
def 0 ifl =0
op() = iopa) if 1 = XA, 17
top(l) Utop(lp) if I =11 120r 11+ 12

where Z= {if e@A then 11 else 1;,A— B: ch(v%.l’, A>B: op, € X). |, X@A :=
e l’, XA} If A e top(l), we say A is aimitiating participant ofl.

The maptop(l) generates a set of participants that initiates the firsoadf |. We can
now present the definition of connectedness.

Definition 10 (connectedness)he collection otonnected interactionSon is induc-
tively generated as follows.

1. {0, XA} C Con.

2. A> B:ch(vs).l’,A—=B: sop, e X). ", uXB. I” andx@B := e. |’ are inCon if
I” € Con andtop(l’) = {B}.

3. ife@Athenlielsely, I + 1, andly | 1, are inCon if 14, I, € Con and{A} =
top(l1) = top(l2).

Connectedness says that, in communication actions, omlpgssage reception leads to
activity (at the receiving participant), and that such\attishould immediately follow
the reception of messages. We note connectedness enjoygatsaduction property,
shared by well-threadedness and coherence.

5.2 Well-Threadedness

In order to formally introduce the notion of well-threadeds, we need to annotate a
global interaction with threads.

20

Definition 11 (annotated interaction).Annotated interactionglenoted byA, A’ .. .,
are given by the following grammar.

A= A" > B?:ch(v§. A | x@A :=e A | A1l Az
| A" B2 sop, e y).A| f'XMNA | AL +7 Ay
| if €@A" then A; else A, | X2 0

wherer; € N (calledthread andr; # 72 in the first two lines.

In the abstract syntax tree of the terms in the global cak;udach node is annotated
with threads (given as natural numbers). The notions sudorsectedness easily ex-
tend to annotated interactions. The following is an anmeatatteraction of a previous
example:

Buyer! — Seller? : chy(v s). Seller? — Buyer® : chy(vt).
Buyer® — Seller? : t(ops, V1, X).

Seller2—>Buyerl s (0p2, V2, V)

Our task now is to find a notion of “consistent annotation”danotated interactions, so
that causality specified globally can be precisely realeskizally. For this purpose it is
convenient to consider eaghas an inverted abstract syntax tree. Each node baga
structorwhich is annotated by either one thread or, if it is initiatior communication,
an ordered pair of threads.

Definition 12. 1. If a node inA is initialisation or communication frorB to C and
is annotated by, 72), thent; (resp.r») is theactive (resp. passive) thread by B
(resp. by C)f that node. If the node has other constructors, its animgt#tread is
both active and passive.
2. Ifanode occurs (resp. directly) above some node, thefotheer is a(resp. direct)
predecessoof the latter. Symmetrically we defir(direct) successor

Note if a node is a predecessor of another then the formeungéracshould temporarily
precedes that of the latter. We can now introduce the camgigtcondition for thread
annotation. Below in (G2) we assume the bound name condiiosession names.

Definition 13. An annotated connected interactighnis globally consistenbr simply
consistentf the following conditions hold.

(G1) Freshness Condition: For each node ofl, if it starts with initialisation, then its
passive thread should be fresh w.r.t. all of its predeceggany).

(G2) Session Consistencylf a node ofA starts with a communication betweBrand
C via (say)sand another node of starts with a communication visor an initial-
isation which opens, then the thread b (resp. byC) of the former node should
coincide with the thread bB (resp. byC) of the latter node.

(G3) Causal Consistency:If a node of A is the direct successor of another node of
A (except when the latter node is a top-level parallel contjpzshode), then the
latter’s active thread should coincide with the former pasthread.

21

In (G3) we say a parallel compositiontap-levelf its predecessors (if any) only include
parallel compositions and restrictions.

(G1) says a fresh thread starts when a service is invogd) says two distinct in-
teractions in the same session (which are, by typing, alayseen the same pair of
participants) should be given the same threads w.r.t. eactitipant.(G3) says ifA has
an input annotated as a (passive) thread then its immegiaiéwing output should
be annotated by the same (but this time active) thread.

Below we sayl has an annotatiomd when removing all annotations fros coin-
cides withl.

Definition 14 (well-threaded interactions).| is well-threadedwhen it is connected
and has a consistent annotation.

Note that well-threadedness implies connectedness (lvesit¢ypedness). In Ap-
pendix C, we give a type discipline accepting all and onlylsteleaded interactions,
from which we can derive a sound and complete inductive #&lgorto check well-
threadedness.

5.3 Coherence and End-Point Projection

We now define coherence and then end-point projection., Mstgive the notion of

mergeability of threads. In the rest of the papdy@ed tern(in the end-point calculus)
is a typed sequerit +o P > AorI" + M > A. Moreover, a relation over typed
processes or networks (in the end-point calculusypedif each related pair of typed
terms have the same typing.

Definition 15 (mergeability). Mergeability relation denoted, is the smallest typed
equivalence over terms up toclosed under all typed contexts and the rule:

VieJNnK. Pi=Q Vjed\KkeK\Jop;#op
s> Z30Pj(Xj). Pj »< s> Zkope(X). Q
WhenP =~ Q, we sayP and Q are mergeable

The relation< checks whether two given processes behave without contiiagliwhen
they come to the same course of interactions, i.e. when the ggut branch is selected
by the interacting party. Thus the rules above say that weattaw differences in input
branches which do not overlap, but we do demand each pairtaivieurs with the
same operation to be identical.

Definition 16 (merge operator).u is a partial commutative binary operator on pro-
cesses, such that (1)Rfis a prefixed process with a service channel as its subjest, th
PLUO=0UP=P;and (2)s>> Zicjop;(yi). Pi L s> Zickop;(Vi). Qi is defined as:

Zicankop; (Y1) (Pi L Q) + Zicaopi(yi). Pi +
+ Zick\30P; (i) Qi

where we assume that every timeés applied in the defining clause, sayR@ndQ, we
haveP > Q; and otherwise it is the identity. When these conditionsrexesatisfied,
the operation is undefined.

22

Before introducting projection onto threads, we add a ferthnnotation to each
recursion and each recursion variable. GiyéX".A in an annotated interaction, let
{ri} be the set of threads occurring in, lmgtinitiated in, A. Then we further annotate
this recursion ag™"'X and each fre&X® in A as Xﬁ{tam. The added information is
used for taking & unnecessary recursion from endpoint processes.

Definition 17 (thread projection). Let A be consistently annotated. Then the partial
operationTP(A, 7) is defined as follows:

— TP(A™ — B : b(v§). A,7) &'
b(v3). TP(A, 11) if =11
{! b(8). TP(A, 7o) if T =13
TP(A, 1) otherwise
— TP(A" - B™ : S(op;, &, X). A,7) &'
S<op(e). TP(A,7) ifr=11
{SD opi(x). TP(A,7) if T =12
TP(A, 1) otherwise

— TP(if e@A" then A; else Ap, 1) &'
if ethen TP(A1,7') else TP(Ap,) if T =1’
TP(A1, 7) U TP(A2, 7) otherwise

— TP(x@A” = e A,7) &

x=eTPWA,7)ifr=1
TP(A, 1) otherwise

- TP(A1 07 Az, 1) wf

TP(A1,)@ TP(Ap,) if =17
TP(A1, 7) U TP(A2, 1) otherwise
— TP(ALI” Az 1) € TP(AL) | TP(A2T)
— TP TIXA. A, 1) T X, TP(A, 1) if T € (%), TP(A, 7) if else.

~ TP(XA . 7) € Xif 7 € (7}, Oif else.
- TP(0.7) £'0
If TP(A, 1) is undefined then we s@P(A, 1) =L.

Note the thread projection already uses the definednes®af tiperator. The notion
of coherence assumes this thread-level mergeabilitynditg it to inter-thread consis-
tency. As noted ir§2, the need for inter-thread consistency arises becaustetwip-
tion of the behaviour of a service may as well be scattered iwnvee than one places
in a global description. Since each service chamhalniquely defines a service, we
can collect all threads contributing to its behaviour byingkthe passive thread of each
session initialisation ath.

We now define coherence of well-threaded annotated interaddelow, given an
annotated interactioA, we writet; =4 7, wheneverr; andr; in A belong to the same
service channel.

5 The use of this added information does nieat behaviour, but is needed for type preservation.
The added annotation is only used for thread projection.

23

Definition 18 (coherence)We sayA is coherentf it is consistently annotated (hence
well-threaded) and satisfies:

1. For each threadin A, TP(A, 7) is well-defined.
2. For each pair of threads, 72 in A with 71 =4 72, we haveTP(A, 11) > TP(A, 12).

Proposition 19. Given a well-typed I, it is decidable whether | is coheremr{be con-
nected and well-threaded) or not.

We can now define the endpoint projection. Below we call agrattionl restriction-
free whenever it contains no terms of the foriws) I’ as its subterm. Moreoverr]
denotes the equivalence class{ of r and is formally defined in Appendix C.1

Definition 20 (end-point projection). Let | be a restriction-free and coherent inter-
action with free session namesfid letA be one of its consistent annotations. Then
the end point projection ofv3) A undero, denotedEPP((v8) A, o), is given as the
following network.

(v8) Hacparicay AL Ty || TP(A, ™) 1o@a

7'€[7]
wherepart(A) denotes the set of participants mentionedlin

Remark. (Invariance of EPP w.r.t. Annotations) The result of thejgpction map
defined above doe®ot depend on a specific consistent annotation whias no free
session channels. See [11, Prop. 14, page 91] for details.

5.4 Pruning and Main Theorems

Suppose we have an interaction composed by two brancheg wWieefirst two interac-
tions areBuyer — Seller : ch(v). Seller — Buyer : ack) and then in one branch we
haveBuyer — Seller : (go) and in the otheBuyer — Seller : s(stop). We then get that
Buyer andSeller are respectively projected as

ch(vs).s> ack().3 <1 go{) ® ch(vs).st> ack().5 < stop()
I'ch(s).s<ack().(st> ok() + st stop())

By the dynamics of the choice operator, dropping one braecuces taSeller —
Buyer : s{ack). Buyer — Seller : s{(go). Its end-point projection is the network:

Buyer[ch(vs).s> ack().5< 9o() lr@uyer |

Seller[! ch(s).S < ack().s> go() |, @seller (2)
However the original end-point projection reduces as:
Buyer[ch(vs).st> ack().3<1go() |-@euyer | 3)

Seller[! ch(s).S <1 ack().(st> go() ® s> stop())]-@seller

24

There is discrepancy between (2) and (3): the formerlbsisone branch, while (3)
keeps it. Notice this lost branch is inessential from thevpieint of the internal dy-
namics of the configuration: “stop” is never used the glokesaliption obtained from
reduction.

This example shows that a global interaction can lose inéion during reduction
which is still kept in the corresponding reduction in its EB&e to persistent behaviour
at service channels. This motivates the introduction ohanmetric relation gbrun-
ing that we shall use to state a property of the end-point prigjecBelow we write! R
whenR s an-fold composition of replications.

Definition 21 (pruning). Assumel’ +o P > A, T, I” Ao Q > A and, moreover,
I' ta P > Ais a minimal typing. If further we hav® = Qp'Rwherel’ + Qp > A,
I Ao RandP s« Qp, then we writel' o P<Q > A or P < Q for short; and say
prunes Q

The pruningP < Q indicatesP is the result of cutting i “unnecessary branches” of
Q, in the light of P’s own typing. < is in fact a typed strong bisimulation in the sense
that P < Q means they have precisely the same observable behawrcept for the
visible input actions at pruned inputs, either brancheseplicated channels'hus in
particular it satisfies the following condition.

Lemma 22 (pruning lemma). < is a strong reduction bisimulation in the sense that
it satisfies the following two clauses:

1. If M <N and M— M’ then N— N’ such that M < N’.
2. If M <N and N— N’ then M— M’ such that M < N’.

Further < is transitive.

As noted, < satisfies a stronger property of being a strong bisimulatiort. typed
transitions under the minimal typing of the |.h.s. process®e have finally arrived at
the main results of this papdéelow and henceforth we usgl1, ... to denote consis-
tently annotated interactions;e; denotes the extension afwith the foldingunfolding
of recursion.

Theorem 23 (End-Point Projection). Assume
| is coherent. Assume furth&r+ | > A andT r o. Then we have:

1. (type preservationf I" - | > A is the minimal typing of I, thehi + EPP(l, o) > A’
whereA’ is the result of replacing each occurrence of type assigrtrimen, say
S@A : @, withd: L. In particular, if T + | > 0thenl’ + EPP(l,o) > 0.

2. (soundnessf EPP(l, o) — N then there exists kuch that(o,, 1) — (¢”, I’) and
EPP(l’,07) < =recN.

3. (completenessj (o, 1) — (¢, ") thenEPP(l, o) — N suchthaEPP(l’,o’) < N.

25

Proof Outline. For (1), type preservation, we first note the participantadiomatter in
the minimal typing for processes, i.e. we have ILA[Pi]y, > Aiff T - IT;P; > A as far
as eacly; is typable undeF and assignment of channels to participants conforin to
Thus without loss of precision we only consider processrggrom now on. We use
the following auxiliary typing systems.

— The minimal typing system for annotated terms in the glob&dwus, with sequent
I" Fminl > A.

— The per-thread minimal typing system for the same, with se¢jt . | >A, which
assign the minimal typing to the specified threaaf |.

— The minimal typing system for the endpoint calculus, witentl P > A.

These typing systems are given in [§10,12,16]. If a grouping of free session names
in P is assumed, each of these systems determines the typingelyignce a term
(and a thread in the third case) is given. We therefore assutie a grouping (we can
stipulate any appropriate one). We can then show the fofigwi

(@) T Fminl » AIff LT Fyinl > LA where{r;} exhausts the threads irand, for eachr;,
we havel k| > Aj.

(b) i = 1o A IE TG Fmin TRP(I, 73) = A] whereA’ is the result of replacing each (e.g.)
§AB]:ain Awith§: L.

(c) Given{P;}, supposé; = P;j for eachi, j € I. Thenuilj Fminli Pi > LI A;.

whereUiT; anduiA; are the appropriate merge of typings, defined following tleega
of processes. Now suppoFerny,in | > A and{r;} are the threads ih. By (a) we have
I' = Ul andA = UA; such that; }—;inl > Aj. Hence by(b) we havel'; FminTP(I, 77) > A
for eachr;. Hence by(c) we havel ninli TP(I, 7i) » A, as required.

For (2) and (3), consider coherdnt I1;1; and its projection:

M €' APl | BUQmlmemlos | CHRInenlo

Above for simplicity we consider only three participangmore hiding, and let ead?
etc. be a thread projection (the reasoning is similar in #reegal case).

For (2), soundness, assurite— M’. By induction on the reduction rules, there is
the corresponding redex in The rest is case analysis of the redex, taking the results
of reducingl; of | and either a thread (if it is not interaction) or a pair of e (if

it is). We then collect all threads again and compare theltesfis a simple case,

P e = e.P| results inP| with an altered state, whilg def X@A = el results inl{

with the same state. The projectionipfs the same as the projectionlpéxceptit loses
x := e from the corresponding thread, in this cdethat is we ge®|. For all other
cases it is possible the projection loses some brancheg ovhible replicated process,

which we equate by< . Session initiation and recursion are the most interestasgs.

If the redex is obtained b, e ch(§). P, andQn, et ch(v3). Q/ then we must have

I €Al B2 ch(v §).I7 (with abuse of notation) which results ifv The projection

of the latter must hav® and Q;, and may (or may not) havech(3). P;” (ch session
initiation in other threads). The thesis for this case isitimeplied by the following two
properties of pruning and merge operator:

26

-P < PUQ
— if PuQ="ch(3). RthenP ="!ch(8). P andQ =!ch(§. Q¥ andR=P L Q.

In the recursion case, we have the retﬂ%iafff uX. P[. Itis important to observe that
an unfolding for applying recursion i PRI, o) does not fully correspond to an un-
folding in . In fact an unfolding in the latter may imply many unfoldimgg PH(1, o).
Nevertheless, it is not fficult to prove that we can always unfold furtheriP (1, o)
so to obtain the projection of unfolding In Then, we can prove this case by exploiting
induction hypothesis.

(3), completeness, is by a similar reasoning. For detagks[$1]. O

By Corollary 8 and Lemma 22, Theorem 23 immediately implies:

def
Corollary 24. In 2 below, we let< ¢ = (< U =0

1. (error freedom)f ' + | andT + o, thenEPP(I, o) has ho communication error.

2. (soundnessif EPP(I,o) —" N then there exists Isuch that(c, 1) -" (¢, I')
andEPP(l”,07) < =reN.

3. (completenesdj (o, 1) =" (o7, ") thenEPP(l, o) =" N suchthaEPP(l’,0”) < N.

Proof. (1) isimmediate from Theorem 23 (1) and Corollary 8 (page (®)and (3) are
by Lemma 22 (1,2) and Theorem 23 (2, 3), combined with thedstattiling argument
and induction om. For example, for (2), the case when= 1 is Theorem 23 (2).
Suppose the statement holds umteeductions and assun&PP(A, o) —™1 N. By
definition this mean&PP(A, o) —»" Ng — N for someNy. Hence by (IH) there exists
Ag such that ¢, A) =" (op, Ap) andEPP(Ag, o) < recNo. By No — N and since
< rec Immediately satisfies the same simulation property<asEPP(A/,o’) — N”
such thatN" < cN”. By Theorem 23 (2) again we have, A;) — (o’,.A’) such that
EPP(A’,0’) < N”. By the transitive of< ggc we haveEPP(A’, o’) < N’ as required.
O

6 Extensions and Applications of EPP Theory

6.1 Local variable declaration.

We consider extensions and applications of the theory of ER§t, we augment the
syntax of globalocal calculi with one useful construdtcal variable declaration

newvar X@A ;= ein| newvar X .= ein P

This construct is indispensable especially for repeatiestycable behaviours, i.e. those
of services. Suppose a bookseller is invoked by two buyeraltaneously, each asking
a quote for a dierent book. If these two threads share a variable, these dguests
will get confused. The use of local variable declaration aaoid such confusion. The
dynamics and typing of this construct are standard [26].dfaipoint projection, it is
treated just as assignment.

27

6.2 Intra-Participant Interaction.

In §3.3, we demanded that, in the grammar of service typing, B in §A, B]. This
means well-typed global terms never have an intra-pagidipteraction. This is a nat-
ural assumption in a business protocol which primarily #iescinter-organisational in-
teractions: however it can be restrictive in other contedtsder connectedness (whose
definition does not change), we can easily adapt the EPPytteetire inclusion of intra-
participantinteractions. First, the typing rules in Tab)page 13, takedit(G-TComlInv)
and refines (G-TGwm) so that the typing[A, B] : a always reflects the direction of the
interaction just inferred. This allows us to treat the cabemA andB are equal. The key
change is in well-threadedness. Whs: B, the condition (G2) (session consistency)
in Definition 13 is problematic since we do not know which of tiwo threads should
be given to which participant. However stipulating the daling condition solves this
ambiguity:

Local Causal Consistency: If there is a downward sequenaetadns which starts from
an active threadr and ends with an action in whichoccurs for the first time (i.er
occurs in no intermediate actions in the sequence), thefatter = occurs passively.

We also note this condition is @onsequencef (G1-3) in the theory without intra-
participant interaction so that we are not adding any exirestraint to inter-participant
interactions.

6.3 Name Passing.

An extension which is technically significant and practligalseful is the introduction
of channel passingChannel passing is often essential in business protodslan
example, consider the following refinement of Buyer-Seflestocol.

Buyer wants to buy a hardware fror8eller, but Buyer knows noSeller's ad-
dress on the net, i.e. it does not knSellers service channel. The only thing
Buyer knows is a service channkhrdware of a DirectoryService, which will
send back the address ofSeller to Buyer which in turn interacts with that
Seller through the obtained channel.

In such a situationBuyer has no prior knowledge of not only the seller’s channel but
also the participant itself. In a global description inghglits typing, participant names
play a basic role. Can we leave the name of a participant arh@annels unknown and
still have a consistent EPP theory? This has been an opeteprdéft in WS-CDL's
current specification (which allows channel passing onhaftixed participant). Below
we restrict our attention to service channel passing, ekofusession name passing
(which poses an additional technical issue [15]).

First, at the level of he endpoint calculus, itfisces to use the channel passing in
the standaret-calculus.

DirectoryService(s).s(y).y(t).P

28

which describes the initial behaviour Bliyer. Notey is an imperative variable, so that
y(1).P first readsthe content ofy then uses it for communication. The typing rules are
extended accordingly.

In the global calculus, we introduce a syntactic variabjecalled aparticipant
placeholdeyfor denoting anonymous participants. For example we catewr

A->Y:x(v9.l Y-V :sop, € y).l
The newly added\ — Y : x(v §). | intuitively says:

A starts a session with session nanesn the service channel stored in x at
the location A.

The participant at which the service ifered is left unknown by placing a placeholder
Y. However this will be instantiated once the variabbg Ais inspected. For example, if
X is evaluated teh@B in the store, the interaction takes place agir B: ch(v§). I.

As an example, we present the buyer-seller-directory seedescussed above:

Buyer — Directory : hardware(v S).
Directory — Buyer : (sell, hware@amazon.co.uk, X).
(Buyer — Y : x(v9). Y —>Buyer : S(OK, data, y) |
Buyer — Directory : s(more, ™, 2).
Directory — Buyer : (sell, hardware@pcworld.co.uk, X).

Buyer — Y’ : x(vS’). Y — Buyer : (0K, data, Y))
Note that, depending on the channel sent fiDirectory, Y andY’ are assigned to

different participants.
The dynamics of the global calculus adds the rule which sfer

(0, A= Y:x(rd.1) = (o, (v 1[B/Y])

whenever we have @A(X) = ch@B.
For types, we first extend the basic typesith (5. We then add, with the obvious
extension to the syntax of types:

I'F x@W; : (fa Frl>A-3[Wo,W] : a
I'rWy ->Wo:x(v9.l>A

Other typing rules can be extended to deal with terms coimigithe participant variable
Y in the same manner.

Finally, for the EPP theory, we need no change in the notiacwoaohectedness. For
well-threadedness, we first annotate placeholders reggrdig. A — Y : x(v§). | as
the start of a new thread fof, so we annotate it a8™ — Y™ : x(v8). | with 7,
fresh. The definition of well-threadedness remains the s@ukerence however needs
additional consideration. The variabt@A can store dierent channels from fferent
participants. For this purpose we use a typing system whécbrds a possible set of
assignment, in the shap@W; : C whereC is a set of channels which may be instan-
tiated intoC. If some concrete channel is @, the behaviour of that channel becomes

29

constrained by coherence. This €4t inferred, starting from some fixed set, by adding
ch(as inx@W; : Cu{ch@B}) when we infer, e.g\W; =W, : s(op;, ch@B, x). |, where
W can be either of participants or placeholders.

Leaving the technical details to [11], we give a flavour of bvg extension works
by the end-point projection of the example above. We firssater the annotated inter-
action for placeholders.

Buyer! — Y2 : x(v). Y3 - Buyer! : S(OK, data, y)

In the projection of this thread, we have placed a helhich should be substituted
with the appropriate service channels.

TP(A,3) =1 (8). § < OK(data)

Thus, checking coherence consists in updating the defindfahe functionthreads
which induces the thread equivalence classes. But whavaquice classes should
threads 3 and 4 belong to? We can use the prediction of alldksilgle valuex can
assume at runtime, i.eware@amazon.co.uk andhardware @pcworld.co.uk. We have
to make sure that thread 3 belongs to tbtkads(A, hware) andthreads(A, hardware).
Then, if we are end-point projecting amazon.co.uk we will substitutehware to _in
both thread projections, and if we are end-point projecgioagorld.co.uk we will sub-
stitutehardware instead.

6.4 Conformance.

By relating global descriptions to their local counterptre presented theory allows us
to make the best of the rich results from the study of procaksuti. One such applica-
tion is conformance checkin@nd its dynamic variant, runtime monitoring), discussed
in Section 1. Our purpose is to have a formal criteria to sa& dbmmunication be-
hvaiour of a progranf® conforms to a global specificatidn

In process algebras, conformance checking verifies whétledsehaviour of a pro-
cess follows that of a specification, the latter also givefoasepresentable as) a pro-
cess. As a theoretical basis of the notion of conformanceameuse behavioural theo-
ries such as (inverse of) simulation or bisimulation. In phesent context, our purpose
is to verify whether an implemented system, $gyconforms to a well-typed descrip-
tion in the global calculus. Through the use of the end-ppinjection, we can reduce
this problem to the conformance between endpoint procealiesing us to use the
standard theory. We illustrate one basic instance in tHeviahg.

The conformance checking we consider starts from the usgefibformation. Let
I be a global description andl be a participant whose behaviour we are interested in.
Let S be an EPP of ontoA. Let P be a program which is supposedly implements the
specificationl at the participanf\. Since the end-point projection generates a process
whose typing coincides with that of the original global dgstion, we can first check
whetherP can be typed under the minimal typing associated Bittf we cannot, then
P does not conform to.

30

Once we know the typing d®? conforms to that o5, we can proceed to validation
of behavioural conformance. As an example Rdie given by:

QuoteCh(vs). st> Quote(X).
if (x < 100)then S <1 Accept() else S <1 Reject()

which may be used in the following configuration:

Buyer[P] | Seller[! QuoteCh(s). S <1 Quote(300).
s> (Accept() + Reject() + Restart())]

Suppose we wish to check whether tRisas the behaviour dBuyer, conforms to a
global specification given as follows.

Buyer — Seller : QuoteCh(v s).
Seller — Buyer : s{Quote, 300 X).
Buyer — Seller : s(Accept) + Buyer — Seller : (Reject)

We have already seen the end point projection of the spetdificabove is given as
follows.

Buyer[QuoteCh(vs). st Quote(X).
(S<tAccept{) St Reject())] |
Seller[! QuoteCh(s). S <1 Quote(300).
s> (Accept() + Reject())]

Let the endpoint process inhabitiyyer above to bes. First, we can check the ty-
pability quite easily, in the sense thatis typable under the minimal typing &. For
example, the minimal type for the chani@@loteCh in S is given as

sS4 Quote(int). s» (Accept(null) + Reject(null))

Call this typea. Thena is notthe minimal type oP at the same channel, but it is indeed
a type assignable tch.

Second, on the basis of well-typedness, we check the coafozenof behaviour
using a typed transition relation. The transition we coesliths the sequent of the form:

Tr(Qao)s4) 5 [+ (Q,0) > A)
Following the framework in [5, 37],L> is typedin the sense that we only consider those

actions deemed possible byandA. In particular, ifI" or A specifies input branches

which are less thaf, then inputs at the extra branches do not take place. We wltﬁite
for the standard weak transition abstracting the silemsiteon. We can then define the
following conformance relation (we include typability: alsvays we fix an appropriate
grouping of free session channels if any).

31

We say a type relatio® over typed terms in the endpoint calculus isv@ak
conformanceff, whenevel" + PoRSy > A, we have: (1) andA are the

minimal typings ofS; and (2) U + Po > A) N (I + Py > A’) implies

|
T'FSo>A) = (I" + Sj > A’) such thal” + PgRS) > A. If T' + PoRS for
some weak conformand® we sayP, conforms to 9.

Thus (apart from typability) the conformanceRfto Sy says that all visible behaviours
of Py are within what is specified i89. We can indeed check that, fBrandS above,
P conforms taS in this sense. Thus this conformance is about safety: dépgod the
application needs, we may as well use a more stringent nofioanformance.

In summary, let be a global description consisting of the participArds well as
other participants. Supposgis a program which implemen®&'s behaviour. Then we
can check the conformance Bfagainst the specificatidnby projectingl to A, which
we callS, and checlP conforms toS, using the conformance relation noted above. The
conformance oP to S may be checked through either hand-calculation (coindayiti
model checking, mechanical syntactic approximation, atinee monitoring.

7 Conclusions

This paper introduced a new formalism based on global d&smni of communication
behaviour, and the corresponding appliedalculus. Both calculi are based on a new
extension of session types, which can handle paralleldntem in one session. A the-
ory of endpoint projection is developed, giving the thredl\sgucturedness conditions
on global descriptions. The sound and complete mapping finem to the correspond-
ing endpoint processes is established.

Global descriptions have been practiced in various engimgeontexts for a long
time: the present work is a trial to realise its potential gemeral programming method,
centring on type structures for communication and the emidtgprojection. The EPP
theory needs be further explored for all basic concurreagpmming primitives, in-
cluding general sequencing, various mutual exclusionatfers, exceptions, timeout
and other useful primitives. While channel passing in onglaage can encode a syn-
chronisation mechanism, a valuable future topic is itsradgon with primitives for
locking primitives and software transaction memory, sitteenotion of atomicity un-
dergoes a fundamental change when we move to communicztiotered program-
ming.

References

1. M. Abadi and A. D. Gordon. A calculus for cryptographic fmeols: The spi calculus.
Information and Computatiqri48(1):1-70, Jan. 1999.

2. R. Amadio, G. Boudol, and C. Lhoussaine. The receptivieibiged pi-calculus. IfProc. of
the FST-TCS '99volume 1738 of.NCS Springer-Verlag, 1999.

3. J. Baeten, H. van Beek, and S. Mauw. Specifying interngliGgtions with DiCons. IFBAC
'01, pages 576-584, 2001.

32

10.

11.

12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.

28.

N. Benton, L. Cardelli, and C. Fournet. Modern concuryeabstractions for C#.ACM
Trans. Program. Lang. SysR6(5):769-804, 2004.

. M. Berger, K. Honda, and N. Yoshida. Sequentiality andrtiealculus. InProc. TLCA'01

2001.

. M. Berger, K. Honda, and N. Yoshida. Genericity and theglculus. InProc. FOSSACS’Q3

2003.

. K. Bhargavan, C. Fournet, and A. Gordon. \Verified refeeermplementations of

WS-Security protocolsTo appear in WS-FM '062006.

. B. Blanchet. An fiicient cryptographic protocol verifier based on Prolog rulss CSFW

pages 82-96, 2001.

. E. Bonelli, A. B. Compagnoni, and E. L. Gunter. Corresp® assertions for pro-

cess synchronization in concurrent communicatiodsurnal of Functional Programming
15(2):219-247, 2005.

N. Busi, R. Gorrieri, C. Guidi, R. Lucchi, and G. Zavatta€horeography and orchestration
conformance for system design. GOORDINATIONvolume 4038 oL NCS pages 63-81,
2006.

M. Carbone, K. Honda, N. Yoshida, R. Milner, G. Brown, @dRoss-Talbot. Theo-
retical basis of communication-centred concurrent pnagning (w3c working note ver-
sion). http/www.dcs.gmul.ac.yk-carbonerncdlpapefworkingnote.pdf. To be published
from W3C, August 2006.

M. Dezani-Ciancaglini, D. Mostrous, N. Yoshida, and $od€3opoulou. Session Types for
Object-Oriented Languages. Rroceedings of ECOOP’Q&NCS, 2006.

S. Gay and M. Hole. Subtyping for session types in the fgiutzs. Acta Informatica
42(2-3):191-225, Nov. 2005.

K. Honda. Composing processesPhoceedings of POPL'9¢pages 344-357, 1996.

K. Honda, V. T. Vasconcelos, and M. Kubo. Language prestand type discipline for
structured communication-based programming. EBOP '98 pages 122-138. Springer,
1998.

K. Honda, N. Yoshida, and M. Berger. Control in thealculus. InProc. Fourth ACM-
SIGPLAN Continuation Workshop (CW’'02004.

A. Igarashi and N. Kobayashi. A generic type system ferghcalculus. InPPOPL, pages
128-141, 2001.

International Telecommunication Union. Recommertefi. 120: Message sequence chart,
1996.

N. Kobayashi, B. Pierce, and D. Turner. Linear types amalculus. InProceedings of
POPL'96 pages 358-371, 1996.

C. Laneve and L. Padovani. Smooth orchestratord-o085aCS '06LNCS, pages 32-46,
2006.

R. Milner. The polyadicr-calculus: A tutorial. InLogic and Algebra of Specification
Springer-Verlag, Heidelberg, 1993.

R. Milner, J. Parrow, and D. Walker. A calculus of mobilegesses, | and llinformation
and Computation100(1):1-40,41-77, Sept. 1992.

R. M. Needham and M. D. Schroeder. Using encryption farentication in large networks
of computersCommun. ACM21(12):993-999, 1978.

OMG. Unified modelling language, version 2.0, 2004.

PI4SOA. httgfwww.pidsoa.org.

B. C. PierceTypes and Programming LanguagédIT Press, 2002.

B. C. Pierce and D. Sangiorgi. Typing and subtyping fobiteoprocessesMathematical
Structures in Computer Sciend&5):409-453, Oct. 1996.

B. C. Pierce and D. N. Turner. Pict: A programming langubgsed on the pi-calculus. In
Proof, Language and Interaction: Essays in Honour of Robimét. MIT Press, 2000.

33

29

30.
31.
32.
33.

34.

35.

36.

37.

. S. Qadeer, S. K. Rajamani, and J. Rehof. Summarizinggeguwes in concurrent programs.
In POPL, 2004.

S. Ross-Talbot and T. Fletcher. Ws-cdl primer. Unphielisdraft, May 2006.

D. Sangiorgi. Uniform receptive. ICALP, 2004.

D. Sangiorgi. Modal theory. IICALP, 2005.

K. Takeuchi, K. Honda, and M. Kubo. An interaction-balsedjuage and its typing system.
In PARLE’94 volume 817 oLLNCS pages 398—-413, 1994.

W. van der Aalst. Inheritance of interorganizationalrkflows: How to agree to disagree
without loosing control?nformation Technology and Management Jourr24B):195-231,
2002.

V. T. Vasconcelos, A. Ravara, and S. J. Gay. Session fgp&snctional multithreading. In
CONCUR '04 LNCS, pages 497-511, 2004.

W3C WS-CDL Working Group. Web services choreographycdeton language version
1.0. httpz/www.w3.0rgTR/2004WD-ws-cdl-10-2004042/7

N. Yoshida, M. Berger, and K. Honda. Strong Normaligatio the 7-Calculus. In
Proc. LICS'0] pages 311-322. IEEE, 2001. The full version to appedoirnal of Inf.&
Comp.

34

A

An Example of Endpoint Projection

In the following we illustrate the formal notion of endpoprojection we have devel-
oped in the paper using a fairly large toy example involving fparticipants. First, we
explain the example in English; then we introduce the dpsoni in the global calculus;
finally we project the description to endpoint processes.

A.1 Global Description in English

The example is an extension of the buyer-seller examplednted in section 2. The
participants involved in this protocol are

arwbdPE

Buyer (B)

Seller (S)

Vendor (V)
CreditChecker (CC)
RoyalMail (RM)

The protocol proceeds as follows:

1.

2.
3.

4,

Buyer requests a servicehcc for company check to the credit checkered-
itChecker by sending its name.

At this pointCreditChecker can either give a positive or negative answer.

If the answer is positive:

(a) Buyer asksSeller for a quote about produgtod;
(b) Seller then askd/endor for servicechy
(c) Seller starts recursion and ask'sndor for a quote about produgtod;
(d) Vendor replies with a quoteuote;
(e) Seller forwardsquote to Buyer increasing it by 10 unitsguote+10);
(f) if the quote is reasonabledasonabléquote + 10)) then:
i. Buyer sendsSeller a confirmationquoteOK) together with the creditted);
ii. Seller then contact€reditChecker for checking the credit;
iii. If the credit is good then:
A. Seller contactsShipper (servicechsy);
B. Seller sends the delivery address;
C. Shipper sends a confirmation;
D. Seller forwards confirmation t®uyer;
iv. If the creditis bad:
A. CreditChecker tells Buyer;
B. Buyer tells Seller terminating the protocol;
(g) if the quote is not reasonable the protocol goes back ittt Bg;

If the answer is negative then the protocol terminates.

35

A.2 Global Description in the Calculus

The global description consists of several componentsgadability. We directly give
annotated interaction. The main description is:

1. B! - CC?: chee(vs). CC?— B! : s(ack).
2. B'—CC? : s(companyCheck, sellerName, compName).
{
CC?— B! : 5(good). |good
+
CC2-B!: g(bad). 0
}

wherelgyoq in Line 4 is:

1. B! - S3:chg(vt). S3—= B! : r{ack).
2. B'—S®: (quoteReq, prod, prod).
3. S Vv4:ichy(vr).

4. V*-5S8:r{ack).

5 uXs. {
6

7

8

9

No o Aw

S3 V4 : r{quoteReg, prod, prod).
V4 - S8 : r(quoteRes, quote, quote).
S8 B! : t(quoteRes, quote + 10, quote).
) if reasonabléuote) @B then
10. B! — S®: t{(quoteOK, cred, cred).
11 S® — CC®: chee(vu).
12 CC® - S3: uw(ack).

13 S% - CC® : w(personalCreditCheck, cred:adr, cred:adr).
14, {
15, CC®>— S®: u(good). 14 ood
16. +
17. CC®>—> S8 : whbad).
18, S3— B! : t(yourCreditlsBad). 0
19. }
20. else B1— S% : t{(quoteNotOK). X3
21}
Where'éood in Line 15 is:

1. S® > Re: chg(vp).

2. RE—S3: p(ack).

3. S® 5 RP: p(deliv, adr, adr).
4. RP—S3: p(conf).

5. S2 B! : t{conf). 0

We can check these descriptions are typable, strongly abedewell-threaded and
coherent. For connectedness, the descritption given abse® a lot ofacks. As we
discussed in the long version, many of these acks are in farteessary by using a
relaxed notion of connectedness.

36

A.3 End-Point Projection of the Global Interaction

Following the definition of EPP in the paper, we first projeot fglobal descrtiption
onto each thread. The first oneBgyer’s only thread.

TP(l,1) = chec(vs). st> ack(). S <1 companyCheck(sellerName).
{ s> good(). chg(vt). t > ack(). T <t quoteReq(prod).
uX. t > quoteRes(quote).
if reasonabléguote} then t <1 quoteOK(cred).
{t > yourCreditlsBad()

4
t > conf()}
else t <1 quoteNoteOK(). X
n
s> bad(). 0 }

Note this thread starts before the recursion and go thraugjtie the (global) recursion.
Thus the projected endpoint behaviour also contains ramurs

The next projection is onto the first thread©feditChecker (note this participant
has two threads, 2 and 5).

TP(l, 2) = ! chee(9). S < ack(). s> companyCheck(compName).
{ S<1 good().
5
S<ibad().0 }

Note no recursion is involved in this thread projection,giyrbecause the thread 2 does
not occur inside the recursion.

Next we jump to Thread 5, which is another componer@iaditChecker.

TP(l,5) = ! chee(u). U < ack(). u > personalCreditCheck(cred:adr)
(U < good()
n
U < bad()

Note the process does not include the recursion either. i§Higcause it is inside a
recursion and it initiates a new thread there. As a resulttue is identical with the
projection onto Thread 2.

37

We now move to the projection onto the unique threa8eifer, which is Thread 3.

TP(I,3) = ! chs(t). T < ack(). t > quoteReq(prod). chy(vr). t > ack().
uX. T < quoteReqg(prod). r > quoteRes(quote).
t <1 quoteRes(quote + 10).
{ t > quoteOK(cred). chcC(vu). u > ack().
U < personalCreditCheck{cred:adr).

{ut> good(). ch(vp). p > ack()
P < deliv{adr). p > conf()t < conf()
4
u > bad(). t < CreditisBad() }
i
t > quoteNoteOK(). X

As before, this thread starts outside of the recursion irgtbkbal description and is also
used inside, so that both the recursion and the recursidgablarare used as they are,
leading to the recursive behaviour of the process. Note hewse of session functions
as a way to handle recursion appropriately in EPP.

The projection onto the unique thread\@fndor follows.

TP(l, 4) = ! chy(r). t < ack().
uX. r > quoteReq(prod). T <1 QuoteRes{quote). X

Finally we end with the projection onto Thread 6, giving thegle behaviour of
RoyalMail.

TP(l, 6) = ! chr(p). P < ack(). p &> deliv(adr). p < conf()

As before, Thread 6 does noont contain recursion since itlig inside the (global)
recursion, initiating a thread there.

As noted, there are two threads (2 and 5) that belong to the skass of equivalence
i.e. they are part of the same service charofglk. This means that we must merge
the two threads in the final EPP. By applying the merge operatal noting they are
evidently mergeable, we get the following process:

I chee(u). T <1 ack().
personalCreditCheck(cred:adr). (U < good() & bad(})
u +
companyCheck(compName). (U <igood() & bad())

By which we have arrived at the endpoint behaviours of altipigiants realising the
original global description.

The projection works because of the linear usage of charingilde each session
and service channel principle, as well as the three wallettiredness conditions. We

38

Table 5 Semantics of the End-Point Calculus

(EP-Intr) —
Allch(d). PP], 1 B[ch(v§).Q| Q], — (v§ (Al!ch(S.P|P|P], IB[QIQ]~)

ocrelv
EP-G
P A SETon (0P TP 1, [B[5 < 0p(®. Q1Q' T, = AP, TP Loy 1BLQT Q' T,

oreltt M - M
EP-RrRl) — ——
Al if ethen Py else P,|P'], —» A[P1| P], (r1) MIN - M’IN

(EP-ET)

orelff i€{1,2

EP-FF EP-
(JAfetenPiese PP 1, - AB TP, O MAB orRR, - APR,

AlP]l, - ALP], ocrelv

EPRD o9PL, = AP, & AN A= PP T, > ALPTP Lo

M- M M’ M — N’ N =N

M =
(EP-REQZ) m (EP-S"RUCT) M= N
A P[uXP/X]1Q], IN - N Al P1|IR], - A[P}IR],
PR Pl IN - v EPR B R RL, = ARIPIR],

believe many business protocols conform to these condifimodulo relaxation of con-
nectedness we discussed in the long version). How thesétiomsdcan be extended in
disciplined ways to allow more “untamed” protocols (suchtasse involving excep-
tions) to be treated in the theory, is an interesting sulgéfirther studies.

B Appendix: the End-Point Calculus
This appendix lists the full reduction rules and typing eysiof the end-point calculus.

The full typing rules are listed in Tables 7 and 6. The rule{EBkanch) for input
in-session communication involves branching with didtioperators: the typing can
have less branches than the real process, so that the pisgeepared to receive any
operator specified in the type. Rule (EP£LSis its dual: the typing can have more
branches than the real process, so that the process invdtkesperators at most those
specified in types. Combining (EP-®BxcuH) and (EP-T$L), an output never tries to
invoke a non-existent option in its matching input.

Rule (EP-T&rv) is for typing the inputting side of initialisation. Note vei not
allow those session channels other than the target ofliaétéoon to be present as the
session typing in the premise: this preveinée session channels to be under the repli-

39

Table 6 Session Types for Processes in the End-Point Calculus

CJ se8 Ttk

:91'

I' Fa Pj > A-3@A: o]

K
(EP-TBrANCH) T

jeJCK Tre:6

F S>> Ziejopi(X@).Pi > A- §@A: Sh» ZiEKOpi(Gi). Qi

I' kA P> A'g@A:QJ‘

(EP-TSuw)

F'ra P> A §sSS: L
F'ra (VP> A §%:L

(EP-TRes1)

I' kAo P > 3@A:«@
I, ch@A:(Sa +a 'ch(8).P > 0

(EP-TSirv)

FI—APiDAi Alez
I'ka P1|Q2DA1®A2

(EP-TRR)

FaX:0 Tre:0 TraP>A

I' Fa S<opie).P > A-3@A: s < Xikxop;(6). ai

F'raP> A e L
I'ra (VP> A

(EP-TR:s2)

I, ch@B:(Ya Fa P> A-3@A: a
I, ch@B: (9 +a Chvd.P > A

(EP-TRQ)

I'te:bool THaP>A
I'+aifethen Py else P, > A

(EP-TK)

ILX:Ara P> A

r
EP-TAs EP-TR:
(SIGN) Frax:=eP>A (2 I Fa uXP > A
IF'raP>A THA QD> A _
EP-TS) EP-TVAR) ———
(v) IF'raPeQr> A (AR)F,XZAI—AXDA
IF'raP>A {§nfsc(A)=0 I" well-formed.
EP-T EP-TI. _—
(Bor) IF'raP>A-8: L (Ac) IF'raO>0
FraP>A {§Nnfsc(A) =0

EP-TE
(b) I'ta P> A-3@A: end

cated input, guaranteeing their linear usage. The typitigarconclusion means (by our
convention) thath or ch does not occur ifi. The outputting side of initialisation (rule
(EP-TR:q)) is analogous, except that the linearity constraint need$be specified. We
assume thaf and B are not identical. The fact we alloeh@B : (3« to occur in the
premise means an invocation to a service can be done as maaty &is needed (as far
as it is type correct).

As for rule (EP-TRRr) and (EP-TE&N) we need to define the operaterando.

1. (compatibility, 1) We writd™; < TI'» iff wheneverch occurs in botH'y; andI',, we
have: (1)ch@A : (3« € I'; andch@A : (Ya € I'; or its symmetric case; or (2)
ch@A : (3« € I'yo; similarly, for eachX andx, we demand they have precisely the
same assignments when occuring in both.

40

Table 7 Session Types for Networks in the End-Point Calculus

IF'ra P> A FI-O'@A F'etNi>A; TENa> Ay A=Ay
EP-TR EP-TRRrN
() T APLEA (xN) T+ NN AL O A,
F'rM>A {8 nfsc(A)=0 'rMp> A §S5: L
(EP-TEwN) I'M>A-S@A: end (EPT&SNl)Fn-(vs)M > A §%: L
(EP-T&)TN)F'-MDA {8 nfsc(A) =0 (EP-TFtsNZ)F'_ Mp> A e:L

I'rM>A-§: L 'rMp> A
S5In{§)=00=])

{
EP-ThactN
(EP-ThaerN) = >0

2. (composition, 1) Suppodg = I';. ThenI'; © T, is given as follows: (1Eh@A :
(da e oL iffch@A : (da €. (2)ch@A : (3a e T10T, iff ch@A : (3 €T
andch@A : (a ¢ I. (3) For term variables and variables we simply take the
union.

3. (compatibility, 2) We writeA; < A, iff, whenevelS@A : «; € A;, we have either:
(D) {&In{%} = 0; (2) & = & andfsc(a1) Nfsc(az) = 0; or (3) & = & anda; = @z.

4. (composition, 2) Suppo2g =< A,. ThenA; © A, is given as follows: (a3@A : a €
A1 © A, iff either (1)S@A : @ € A1 and{8} nfsc(Az) = 0, or its symmetric case; (2)
a=a1|az 5 @A : a1 € Ay andS@A : @, € A; such thafsc(az) N fsc(ag) = 0;
and (b)s”: L iff S@A : @ € A; andS@A : @ € A,.

C Types for checking Well-Threadedness

We now introduce the type discipline which types all and ombll-threaded interac-
tions, via consistent global and local annotation. Giveriraeractionl, we want to
check if it is well-threaded with respect to each thread cositipnally. In order to
do so, we define a new type system that selects all those dtitera which are well-
threaded. Le§, S, ... range over vectors of session channels.

® = 0-7:(,S) | -7:(,S) | 6,X:®@ | 0

0 indicates, for each thread, associated session chanreekhamirection of the last
action. The judgement has the fofn- A meaning that annotatios is well-threaded
under the assumption about open thread®if‘open” in the sense that it has not
been closed by initialisation). In Table 8 we report the mgpiules where the function
activeT(A) takes the active thread @f and the operatio®; ©®; gives an new environ-
ment containing all those¢ don(®;)udom®,) and and for alk € dom(®1)Ndom®,)

we have that : ©1(1) U O2(7) where, with an abuse of notation, we mean that they
must have the same arrow and the union of the two session negteesWe use rule

41

Table 8 Typing Rules for checking Wellthreadedness

(WT-Ixm) 0,71:(,SWS})),r2: (1.S)+ A activeT(A) =1, S’ C{§
A 0,71 (1,S) F A — B2 : ch(d(rv.)A
(WT-Comm) 0,71:(1,S1),72:(1,S2) + Aj activeT(Ai) =12 J#0

O,71: (1,S1U{s),72: (I, S2U{s)) F ZjA — B2 . S(op;, &, X). A

OrA activeT(4) =1 Or A activeT(A) =1

(WT-Assion) OFr X@A" =e A (WT-IFTuENELs) O + if e@AT then A4 else A»

Or A activeT(A)=r1

(WT'SUM) or .Al I .A2 (WT—ZERO) m
0,7:(1,9+A activeT(A) =71 -
(WT-Res) 0.7 (L) (9 A WT-VaR) S X o r XA

O+ A activeT(Ai) =71 0,X:0rA activeT(A)=1

WT-P WT-R
) =G 60 r r T A (WTReq) O uXA A
OFr Si
WT-PARExT) ——7
(AR T) Oré&l €&

(WT-ParExT) for treating top-level parallel composition nodes (deubby &;). This
corresponds to the requiremd@3) in the definition of consistent annotation.
We can now state the following theorem.

Theorem 25.

1. An annotated interactioA is consistent if and only ® + A.
2. LetA be an annotation of | and & + A. If (o, 1) — (07, ") then there exists an
annotationA’ of I’ such tha® + A’.

The typing system above induces a simple algorithm whichirdunctively annotate
interactions with threads and, along the way, checks it¢-thedadedness. For details
we refer the reader to [11].

C.1 Definitions for thread projections

This subsection defineag =4 72 used in the end point projection. We first define the
mappingthreads(A, ch) in Table 9. If two input threads are for the same service ehan
nel, then they are equivalent. Belmhannels(A) indicates the set of service channels
occurring inA.

42

Table 9 Inductive definition of the functiothreads

. - , def [{r2} U threads(A’, ch) if ch= ch
threads(A™ — B : chlv). A’,ch) = {ih?éads(/{’ ch()) otherwise

threads(A4, ch) %'threads(A’,ch) if A € (A" B : s(op, X, . JA', X@A" = e A, uXt A’
threads(A4, ch) €' threads(A7, ch) U threads(Aj, ch) if A € (if 6€@AT then A else A}, A} + AL, A} | AL}

threads(X?, ch) %' threads(0, ch) €' o

Definition 26. Given a well-threaded annotated interactibnfor all = € A, we define
the equivalence class][* c N as

threads(A, ch) if 3che channels(A) s.t.
[]4 = 7 € threads(A, ch)
{r} otherwise.

Moreover, givenr; andr; in A, we writet; =4 12 whenever there existse A such
thatTl,Tz S [T]A.

43

