
Structured Global Programming for Communication Behaviour

Marco Carbone1,2 Kohei Honda1 Nobuko Yoshida2

1Queen Mary, University of London, UK
2 Imperial College, London, UK

Abstract. This paper presents two different paradigms of description of commu-
nication behaviour, one focussing on global message flows and another on end-
point behaviours, as formal calculi based on session types.The global calculus
originates from Choreography Description Language, a web service description
language developed by W3C WS-CDL working group. The end-point calculus is
a typedπ-calculus. The global calculus describes an interaction scenario from a
vantage viewpoint; the endpoint calculus precisely identifies a local behaviour of
each participant. After introducing the static and dynamicsemantics of these two
calculi, we explore a theory of endpoint projection which defines three principles
for well-structured global description. The theory then defines a translation under
the three principles which is sound and complete in the sensethat all and only
behaviours specified in the global description are realisedas communications
among end-point processes. Throughout the theory, underlying type structures
play a fundamental role.

1 Introduction

Communication-Centred Programming. The explosive growth of Internet and World
Wide Web in the last decades led to, in the form of de facto standards, an omnipresent
naming scheme (URI/URL), omnipresent communication protocols (HTTP and TCP/IP)
and an omnipresent message format (XML). These three elements offer the key infras-
tructural bases for application-level distributed programming. The software systems
which make use of these and other common web standards for distributed communi-
cations are often calledweb services. Web services are an active area of infrastructural
development, involving two major standardisation bodies,W3C and Oasis, and other
private and public organizations.

One of the application domains which can naturally exploit the infrastructural ba-
sis of web services is the so-called business protocols. A business protocol is a series
of structured and automated interactions among two or more business entities used
for achieving their goals. Business protocols are inherently inter-domain, are often
regulation-bound, and demand clear shared understanding about its meaning among
multiple organisations with possibly conflicting interests. Numerous business protocols
will be designed and implemented. Some business protocols such as industry standard
will last long once specified; others would arise from temporary business needs and may
undergo frequent updates. Because of its inherent inter-organizational nature, there is a
strong demand for a common standard for specifying well-founded and correct business
protocols.

1

Global Description of Interaction. One of the standardisation efforts for a language
to specify business protocols is the Web Services Choreography Description Language
(WS-CDL) [36], developed by W3C’s WS-CDL Working Group since 2004 in col-
laboration withπ-calculus experts as scientific advisors. WS-CDL is a specification
language which directly describes global information flowsand their structures, close
to, for example, the standard notation for cryptographic protocols [23], UML sequence
diagrams [24] and message sequence charts (MSC) [18]. Unlike these predecessors,
in order to enable precise description and specification of complex business protocols,
WS-CDL offers a fully expressive description language for channel based communi-
cation, equipped with standard control constructs (e.g. sequencing, conditionals and
loops) and is conceived with potential for type-based and other formal validation. The
underlying intuition behindchoreographycan be summarised as follows.

“Dancers dance following a global scenario without a singlepoint of control.”

WS-CDL is a language for describing such a “global scenario”for business protocols.
The description can then be executed by individual distributed processes without a sin-
gle point of control.1 Another significant feature of WS-CDL is its use ofsessionsfor
organizing communication behaviour: at the outset of each unit of a business protocol,
a session is established between each pair of communicationparties so that involved
communications can be distinguished from any other instances of business protocols.

Endpoint Projection. A global description of communication behaviour arguably of-
fers conceptual clarity not found in endpoint-based descriptions, partly because a global
interaction flowis often the central objective a communication-based application is in-
tended to realise. Real execution of the description, however, is always through commu-
nication among endpoints which (as the notion of choreography dictates) may as well
involve no centralised control. Thus we ask:

How can we project a global description to endpoint processes so that their
interactions precisely realise the original global description?

Such a projection may be calledendpoint projection (EPP), the term originating from
WS-CDL WG.

What are criteria for a good EPP? We naturally desire an EPP tobe soundand
complete, in the sense that all and only globally described behaviouris realised as com-
munications among endpoints. We may regard such an EPP as giving the semantics of
a global description.

An appropriate notion of EPP leads to significant engineering usage of a global
description:

1. (code generation) For a global description with full algorithmic details, we can
create a (perhaps multi-language)complete distributed applicationby projecting it
to each of its endpoints.

1 An contrasting idea in web service isorchestrationwhere one master component, “conduc-
tor”, directly controls activity of one or more slave components, which is useful in the intra-
organisational applications.

2

2. (prototype generation) Projection can also be used for generating askeleton code
for each endpoint which only contains basic communication behaviour, to be elab-
orated to full code.

3. (conformance) A team of programmers initially agree on a shared global specifica-
tion for interactions among endpoints: during/after programming,each programmer
can check if her/his code conforms to the specification by conformance checking
against projection. This scheme also applies to conformance of existing services/li-
braries to a given scenario.

4. (runtime monitoring, testing and debugging) At runtime,each endpoint can check
if ongoing communications at his/her site conform to the global description by
checking against its projection to that endpoint. The monitoring can also be used
for debugging and testing existing code.

5. (property validation) Various static analyses/logical validation can be done for a
global description so that they make sense for each endpointthrough EPP.

Many of these ideas come from discussions in WS-CDL working group and are partly
already realised in an open-source reference implementation of WS-CDL [25]. For ex-
ample, runtime monitoring is a basic expected use of WS-CDL with relevance to reg-
ulatory concerns, especially for financial protocols. For all of these uses, EPP should
be built on a clear, precise understanding of semantics of global and local descriptions,
guaranteeing exact match between them.

This Work. The present paper introduces two typed calculi for interaction, one being a
distillation of WS-CDL and another an applied version of theπ-calculus, and develops
a theory of endpoint projection. Our central contribution is the identification of natu-
ral descriptive principles for global descriptions which induce a type-preserving EPP
that is sound and complete with respect to their operationalsemantics. There are three
principles:

– Connectedness, a basic local causality principle.
– Well-threadedness, a stronger locality principle based on session types [9, 12, 13,

15, 33, 35].
– Coherence, a consistency principle for description of each participant in a global

description.

These principles are stipulated incrementally on the basisof well-typedness. They not
only enunciate natural disciplines for well-structured global description, but also offer
gradually deeper analysis of global descriptions. The EPP has the following shape:

I 7→ A[P] | B[Q] | C[R] | · · ·

whereI is a global description,A, B andC areparticipantsto the protocol andP, Q and
R are projections ofI onto A, B andC respectively. When applied to well-structured
interactions, the mapping thus defined satisfies the following three properties:

– Type preservation:the typing is preserved through EPP.
– Soundness:nothing but behaviours (reductions) inI are in the image of its EPP.
– Completeness:all behaviours inI are in the image of its EPP.

3

The EPP theory is intended as a theoretical basis of global description languages in-
cluding, but not limited to, WS-CDL. The theory opens a conduit between global de-
scriptions and accumulated studies on process calculi, allowing the exploitation of rich
theories for engineering concerns. A version of EPP theory will be published as an
associated document of WS-CDL 1.0, and will form a part of an open-source imple-
mentation of WS-CDL [25].

Related Works. As far as we know, this work is the first to present the typed calcu-
lus based on global description of communication behaviour, integrated with the the-
ory of endpoint projection. Global methods for describing communication behaviour
have been practiced in several different engineering scenes in addition to WS-CDL
(for which this work is intended to serve as its theoretical underpinning). Representa-
tive examples include the standard notation for cryptographic protocols [23], message
sequence charts (MSC) [18], and UML sequence diagrams [24].These notations are in-
tended to offer a useful aid at the design/specification stage, and do not offer full-fledged
programming language, lacking in e.g. standard control structures and/or value passing.
Petri-nets [34] may also be viewed as offering a global description, though again they
are more useful as a specification/analytical tool.

DiCons (which stands for “Distributed Consensus”), which is independently con-
ceived and predates WS-CDL, is a notation for global description and programming of
Internet applications introduced and studied by Baeton andothers [3]. DiCons chooses
to use programming primitives close to user’s experience inthe web, such as web server
invocation, email, and web form filing, rather than general communication primitives.
Its semantics is given by either MSCs or direct operational semantics. DiCons does not
use session types or other channel-based typing. An analogue of the theory of endpoint
projection has not been developed in the context of DiCons.

The present work shares with many recent works its directiontowards well-structured
communication-centred programming using types. Pict [28]is the programming lan-
guage based on theπ-calculus, with rich type disciplines including linear andpolymor-
phic types (which come from the studies on types for theπ-calculus discussed in the
next paragraph). Polyphonic C♯ [4] uses a type discipline for safe and sophisticated ob-
ject synchronisation. Compagnoni, Dezani, Gay, Vasconcelos and others have studied
interplay of session type disciplines with different programming constructs and program
properties [9, 12, 13, 15, 33, 35]. The EPP theory offers a passage through which these
studies (all based on endpoint languages and calculi) can bereflected onto global de-
scriptions, as we have demonstrated for session types in thepresent work. In the context
of session types, the present work extends the session structure with multiple session
names which is useful for having parallel communications inside a session.

Many theories of types for theπ-calculus are studied. In addition to the study of
session types mentioned above, these include input/output types [21, 27], linear types
[14, 19], various kinds of behavioural types [2, 5, 6, 16, 17,31, 32, 37] and combination
of behavioural types and model checking for advanced behavioural analysis [29], to
name a few. Among others, behavioural types offer an advanced analyses for such phe-
nomena as deadlock freedom. We are currently studying how these advanced type-based
validationon techniques on the basis of the present simple session type discipline will

4

lead to effective validation techniques. Again these theories would become applicable
to global descritpions through the link established by the EPP theory.

Gordon, Fournet, Bhargavan and Corin studied security-related aspects of web ser-
vices in their series of works (whose origin lies in the security-enhanced pi-calculus
called spi-calculus [1]). In their recent work [7], the authors have implemented part of
WS-Security libraries using a dialect of ML, and have shown how annotated application-
level usage of these security libraries in web services can be analysed with respect to
their security properties by translation into theπ-calculus [8]. The benefits of such a tool
can be reflected onto the global descriptions through the theory of EPP, by applying the
tool to projections.

Laneve and Padovani [20] give a model of orchestrations of web services using an
extensions ofπ-calculus to join patterns. They propose a typing system forguaranteeing
a notion of smoothness i.e. a constraint on input join patterns such that their subjects
(channels) are co-located in order to avoid a classical global consensus problem dur-
ing communication. Reflecting the centralised nature of orchestration (cf. footnote 1),
neither a global calculus nor endpoint projection is considered. A bisimulation-based
correspondence between choreography and orchestration inthe context of web services
has been studied in [10] by Busi and others, where a notion of state variables is used in
the semantics of the orchestration model. They operationally relate choreographies to
orchestration. Neither strong type systems nor disciplines for end-point projection are
studied in their work.

Outline. Section 2 previews the key technical ideas using concrete examples. Sections
3 and 4 outline the global and endpoint calculi, introducingtheir static and dynamic
semantics. Section 5 develops the theory of endpoint projection. Section 6 summarises
further results and applications of end-point projection.Section 7 concludes with further
topics. The appendix presents a larger example illustrating how the endpoint projection
concretely works. Many examples and the full technical developments of the theory are
found in the full version [11].

Acknowledgements.The present work is part of ongoing collaboration between W3C
WS-CDL working group and a team ofπ-calculus experts, led by Robin Milner. Its de-
velopment has benefitted from the extensive discussions with WS-CDL working group
members. In particular we thank Steve Ross-Talbot and Gary Brown for our many fas-
cinating (and ongoing) conversations.

2 Preview of Key Technical Ideas

2.1 Buyer-Seller Protocol.

This section gives an outline of key technical ideas. Throughout we consider a simple
business protocol from [30], which we call “Buyer-Seller Protocol”, and its variations.
In the core protocol, the participants involved are a Buyer,a Seller and a Shipper. We
first describe the protocol in the following sequence diagram.

5

Buyer ShipperSeller

Accept
Choice

{

Quote

quoteCh

Reject

delivCh

DeliveryDetails

DeliveryDetails

In words, the protocol consists of the following actions.

(1) Buyer asksSeller, through a specified channel, to offer a quote (denotedquote) for
buying a specific good;

(2) Seller replies with a quote;
(3) Buyer then answers with either an accept or a reject.
(4) In the case of acceptance,

(4-1) Seller sends the order to theShipper;
(4-2) Shipper sends the delivery details back to theSeller.
(4-3) Seller forwards them toBuyer: the protocol terminates.

(5) In the case of rejection, the protocol terminates.

Note the diagram is ambiguous on the branching Actions (4) and (5): the purpose of
such diagrams is to offer an informal overview rather than precise specification. Nev-
ertheless, protocols tend to be complex, with nondeterministic and conditional choices,
loops, timeout and other elements. This motivates a need of asyntactic means, i.e. a
language, for describing such protocols.

Some of the central elements of such a language (WS-CDL is oneexample) may be
determined by observing that the whole intention of specifying such protocols is toin-
stantiate it repeatedly, including its shared usage (e.g. the Buyer role can be assumed by
any potential and possibly concurrent buyers). This consideration leads to the following
two simple engineering principles.

Service Channel Principle (SCP): Invocation channels (e.g. a channel at whichBuyer
first communicates toSeller, similarlySeller to Shipper) can be shared and invoked
repeatedly.

Session Principle (SP):A sequence of conversations belonging to a protocol should
not be confused with other concurrent runs of this or other protocols by the par-
ticipants: in other words, each such sequence should form one logical unit of a
conversation, or asession.

(SCP) does not preclude a channel is only known to a closed number of participants. It
corresponds to a replicated channel in theπ-calculus, or, more accurately, a replicated

6

channel which is not prefixed by other input prefixes (such channels are calleduniformly
receptivein [31] andserver channelsin [5]. (SP) can have complex forms, but a most
basic one is a dyadic one which allows simple and robust type abstraction with tractable
type checking [12, 15, 35].2 These two principles are central for the whole technical
development in the paper.

2.2 A Language for Global Description of Communication.

The following presents the full description of Buyer-Seller Protocol in theglobal cal-
culus, whose syntax and semantics we shall formally introduce later.

1. Buyer→ Seller : quoteCh(ν s).
2. Seller→Buyer : s〈Quote, 300, x〉. {
3. {Buyer→Seller : s〈Accept〉.
4. Seller→ Shipper : delivCh(ν t).
5. Shipper→Seller : t〈DelivDetails, vdetails, xdetails〉.
6. Seller→Buyer : s〈DelivDetails, xdetails, ydetails〉. 0 }
7. +

8. {Buyer→Seller : s〈Reject〉. 0}
9. }

Line 1 describes Action (1) in the previous informal description of the protocol. The
quoteCh is aservice channel, which may be considered as a publicly known URL for a
specific service. The invocation marks the start of a sessionbetween the buyer and the
seller: theν-bounds is asession name, a fresh name that will be used for later commu-
nication in this session. Unlike standard process calculi,the syntax no longer describes
input and output actions separately: the information exchange is directly described.

Line 2 describes Action (2) in the scenario,Seller’s reply toBuyer. The session has
already been started and now the two participants communicate using the session name
s. In addition, three factors involved:Quote identifies the particular operation used in
this communication (i.e. request of quote), 300 is the quotesent bySeller; x is a variable
located atBuyer where the communicated value will be stored.

Lines 3/8 describe Action (3), whereBuyer communicates its choice (Accept or
Reject) to Seller throughs. Two series of actions which follow these choices are com-
bined by+ in Line 7. If Accept is chosen,Seller sendsShipper the Buyer’s details
via the service channeldelivCh of Shipper, creating a fresh session namet (Line 4).
Then in Line 5,Shipper sends back the shipping details throught. Finally Seller for-
wards the details toBuyer in Line 6, where the protocol terminates. In Line 8,Buyer
communicatesReject, in which case the protocol immediately terminates.

The code above offers a precise global description of the informal scenario above,
drawing on (SCP) and (SP). Sessions offer logical grouping of threads of interactions,

2 In implementations of web services, sessions are implemented using so-calledco-relation
identities (which may be considered as nonces in cryptographic protocols). This and the
channel-based representation usually employed in the study of session types are logically
equivalent, as discussed in [1].

7

where each thread starts with a procedure-call-like service invocation. This last feature
can be seen more clearly in the following refinement of the code above.

1. Buyer→ Seller : quoteCh(ν s).
2. rec X. {
3. Seller→Buyer : s〈Quote, q, x〉.
4. if reasonable(x)@Buyer then
5. {Buyer→Seller : s〈Accept〉.
6. Seller→ Shipper : delivCh(ν t).
7. Shipper→Seller : t〈DelivDetails, vdetails, xdetails〉.
8. Seller→Buyer : s〈DelivDetails, xdetails, ydetails〉. 0 }
9. else
10. {Buyer→Seller : s〈Reject〉. q:=q−1@Seller. X } }
11. }

Above if Buyer choosesReject, the protocol recurs to Line 3 after decrementing the
quote. In Line 4, we assume a unary predicatereasonable(x) evaluated atSeller (“@”
indicates a location, similarly in Line 10). Note the session notation makes it clear that
all Quote-messages fromSeller to Buyer in the recursion are done within a single
session. Later in this preview we shall present another example where such session
information plays a crucial role in tractable endpoint projection.

For comparison we present the endpoint counterpart of the first simple global code.
The first is the endpoint code ofBuyer.

Buyer[QuoteCh(νs). s⊲ Quote(x). {

{ s⊳ Accept. s⊲ DeliveryDetails(ydetails). 0 } +

{ s⊳ Reject. 0} }]

AboveBuyer[P] indicates a participant (a named agent) whose behaviour isgiven by
P. TheSeller’s code is given as:

Seller[! QuoteCh(s). s⊳ Quote〈300〉. {

{ s⊲ Accept.

DeliveryCh(νt). t ⊲ DeliveryDetails(xdetails).

s⊳ DeliveryDetails〈xdetails〉. 0 } +

{Reject. 0 } }]

The code ofShipper is similar. Observe endpoint descriptions clearly depict local
communication behaviour. However they do not directly describe how interaction pro-
ceeds globally, which may often be the central concern of thedesigners and users of a
communication-centredapplication. The two service channels (QuoteChandDeliverCh)
are replicated and ready to receive invocations, following(SCP).

As may be seen above, extraction of behaviour from a global description relies on
session information. We illustrate this point further. Consider the following snippet of

8

global description, wherea andb are used to indicate the lack of session information.

Buyer→Seller : a〈QuoteReq, pname1, pname1〉.
Seller→Buyer : b〈QuoteRes, quote1, quote1〉.
Buyer→Seller : a〈QuoteReq, pname2, pname2〉.
Seller→Buyer : b〈QuoteRes, quote2, quote2〉. I

Here Buyer requests a quote twice: it may look that the behaviour ofSeller is such that
it allows a consecutive quote requests in one go. This ambuity is resolved if we put a
session information:

Buyer→Seller : ch(s)〈QuoteReq, pname1, pname1〉.
Seller→Buyer : s〈QuoteRes, quote1, quote1〉.
Buyer→Seller : ch(t)〈QuoteReq, pname2, pname2〉.
Seller→Buyer : t〈QuoteRes, quote2, quote2〉. I

(1)

(Above we use a construct which combines a session initiation and an in-session com-
munication. This is convenient for practice: our theoretical treatment in the present
paper separates these two for clearer formal presentation,with no loss of generality via
a simple encoding.) Using the session information, we infer:

!ch(s)[〈QuoteReq〉(pname).s〈QuoteRes〉(quote).P]

Note the endpoint behaviour would have been quite different if we represent all request-
replies as belonging to a single session.

2.3 Disciplines for Global Description.

Even if a global flow of interaction is the primary concern of an application designer,
in implementation, a global scenario has to be realised by distributed end-points com-
municating with each other. Thus we need to bridge the world of global description to
endpoint descriptions. Our ultimate aim is to have global descriptions such that their
operational content, or endpoint realisation, is transparent from these descriptions.

Having such a bridge is non-trivial because a global calculus allowsdescription of
communication behaviour that does not make sense at endpoints.As the first such issue,
let us consider the following code snippet for global description:

Buyer→ Seller : ch1(ν s).

Shipper→ Depot : ch2(ν t). 0

Above Shipper is supposed to contactDepot only after Buyer performed a request
to Seller. Implementing such a system demandsShipper is notified once the initial
communication is performed, i.e. there is an implicit communication fromSeller to
Shipper:

Buyer→ Seller : ch1(ν s).

Seller→ Shipper : ch(ν s′).

Shipper→ Depot : ch2(ν t). 0

9

With this insertion, the description is realisable purely through explicitly specified mes-
sage exchanges. The criteria which says each participant acts only as a result of its local
event (such as reception of a message) is calledconnectedness. We shall give its formal
definition in Section 5.

Connectedness is an intuitive idea for well-structured global description. The next
condition is more subtle. Consider the following (connected) interaction:

Buyer→ Seller : ch1(ν s).

Seller→ Shipper : ch2(ν t).

Shipper→ Buyer : ch3(νu).

Buyer→Seller : s〈op, v, x〉. I

Above we assumeBuyer offers a service channelch3 which is useful forShipper. We
claim that this global code (regardless of ensuing interaction at I) is unrealisable at
endpoints, at least under the natural type discipline and code organisation.

The first action tells that there is a thread inBuyer which invokesSeller. This thread
becomes inactive in the second line. In the third line, a service atch3 in Buyer is in-
voked. In the final line,Buyer communicates toSeller via a session names opened in
the first action. So, at the endpoint, we should have the following two chunks of the
code:

ch1(νs). s⊳ op〈v〉.P | ! ch3(t).Q

The first chunk is for the initial invocation and ensuring reception ofop in the same
session, while the second is a service atch3 (by (SCP) this channel should be ready to
receive invocations). Note that, bys⊳ op〈v〉 belonging to a sessions, this action cannot
be located underch3. On the other hand, the code ofSeller should be:

! ch1(s). ch2(νt). t ⊲ op(x)

Finally, the code ofShipper becomes:

! ch2(t). ch3(νu).R

We can now have the three endpoint processes get engaged in communications: First,
Buyer invokesch1, thenSeller invokesch2 of Shipper: up to here the interaction follows
the original global scenario. However, at this point, the action s⊲ op(x) is free to react
with its dual actions⊳op〈v〉, beforeShipper invokesSeller’s the other component, the
service atch3. Thus the sequencing in the global description can be violated.

The fundamental issue here is that the given global code assumes a false (unrealis-
able) dependency among actions: the last action belongs to athread which started from
the invocation ofch1, while the description says it should take place as the direct result
of the third action at a distinct thread which has been openedby the invocation atch3.
If a global description is free from such false dependency, we say it iswell-threaded.
We shall see in Section 5 that checking well-threadedness issimple and mechanical.

Well-threadedness not only eliminates false dependency but also allows consistent
extraction of threads (i.e. sequences of actions) from a given global code. These threads

10

become the constituents of endpoint processes in EPP. The final well-structuring princi-
ple is concerned with this composition. It is often necessary to mergethreads to obtain
the final endpoint behaviour of a single service.3 Consider the following parallel com-
position:

Buyer→ Seller : ch(ν s). Seller→Buyer : s〈op1, e, x1〉. I1 |

Buyer→ Seller : ch(ν t). Seller→Buyer : t〈op2, e, x2〉. I2

whereop1 , op2. HereBuyer invokesSeller’s service atch twice in parallel. Now con-
sider constructing the code for this service at channelch: then we need to merge these
two threads into one endpoint behaviour. But the global description is contradictory,
since in one invocation the service reacts withop1, while in another the service reacts
with op2. The description is not self-consistent.

A central issue is that, in a global description, the descriptions of a single endpoint
behaviour (especially a service at a service channel) can bescattered in different por-
tions of the code. Thus, without these scattered descriptions being consistent with each
other, we cannot merge them into a single behaviour. We call such mergeability,co-
herence: coherence is not simply about identity of the behaviour, asin the above case,
since distinct input branches may be described in different portions of a global code.
The details are given in Section 5. Coherence can again be checked mechanically.

With coherence as the final well-structuredness condition,we can now project a
global code to endpoint behaviours that precisely realise the original global scenario.

3 The Gobal Calculus

3.1 Syntax

The syntax of the global calculus is given by the following BNF. I , I ′, . . . denoteterms
of the calculus, also calledinteractions. Below ch, ch′ . . . range overservice chan-
nels, intuitively denoting the shared channels of (web) services; s, t, . . . range overses-
sion names; s̃ indicates a vector of session names;A, B,C, . . . range overparticipants;
x, y, z, . . . over local variables in each participant;X,X′, . . . over term variables; and
e, e′, . . . over arithmetic and other first-order expressions.

I ::= A→ B : ch(ν s̃). I (init)

| A→B : s〈op, e, y〉. I (comm)

| x@A := e. I (assign)

| I1 | I2 (par)

| if e@A then I1 else I2 (ifthenelse)

| I1 + I2 (sum)

| (νs) I (new)

| X (recvar)

| µX. I (rec)

| 0 (inaction)

3 This merging already takes place in the extraction of code in(1) above, though in a trivial way.

11

Table 1Reduction Relation for the Global Calculus

(G-I)
−

(σ, A→ B : ch(ν s̃). I)→ (σ, (νs̃) I)
(G-C)

σ′ = σ[x@B 7→ v] σ ⊢ e@A ⇓ v
(σ, A→B : s〈op, e, x〉. I)→ (σ′, I)

(G-A)
σ′ = σ[x@A 7→ v] σ ⊢ e@A ⇓ v

(σ, x@A := e. I)→ (σ′, I)
(G-S)

i = 1,2
(σ, I1 + I2)→ (σ′, I i)

(G-IT)
σ ⊢ e@A ⇓ tt

(σ, if e@A then I1 else I2)→ (σ, I1)
(G-IF)

σ ⊢ e@A ⇓ ff
(σ, if e@A then I1 else I2)→ (σ, I2)

(G-P)
(σ, I1)→ (σ′, I ′1)

(σ, I1 | I2)→ (σ′, I ′1 | I2)
(G-R)

(σ, I)→ (σ′, I ′)
(σ, (νs̃) I)→ (σ′, (νs̃) I ′)

(G-R)
(σ, I [µX.I/X]) → (σ′, I ′)

(σ, µX.I)→ (σ′, I ′)
(G-S)

I ≡ I ′′ (σ, I)→ (σ, I ′) I ′ ≡ I ′′′

(σ, I ′′)→ (σ′, I ′′′)

The term (init) denotes a session initiation byA to B on service channelch with fresh
session channels ˜s and continuationI . The interaction (com) is the in-session commu-
nication over a session channels. Note thaty is free and does not bindI . The operators
| and+ denote respectively parallel and choice operators.(νs) I is theπ-calculus-like
name restriction, bindings in I . (ifthenelse) and (assign) are the standard conditional
and assignment (e@A indicatese is located atA). µX. I is recursion, where the variable
X is bound inI . 0 denotes termination. The free and bound session channels and term
variables are defined in the usual way.

The presented syntax is intended as the minimum one for presenting examples and
for the EPP theory. Section 6 discusses natural additional syntactic constructs.

3.2 Dynamics

The dynamics of the global calculus is given by reduction relation close to that of im-
perative languages. Astateσ assigns a value to the variables located at each participant.
We shall writeσ@A to denote the portion ofσ local toA, andσ[y@A 7→ v] to denote a
new state which is identical withσ except thatσ′@A(y) is equal tov. The reduction is
the binary relation→ generated by the rules in Table 1. “(σ, I) → (σ′, I ′)” says that
I in the stateσ performs one-step computation and becomesI ′ with the new stateσ′.

Rule (I) is for session initiation: afterA initiates a session withB on service
channelch, A and B share ˜s locally (indicated by binding(νs̃)), and the nextI is
unfolded. The initiation channelch will play an important role for typing and the end-
point projection later. (C) is a key rule: the expressione is evaluated intov in the
A-portion of the stateσ and then assigned to the variablex located atB resulting in
new the stateσ[x@B 7→ v]. Note that the same variable (sayx) can be located at
different participants, so thatσ@A(x) andσ@B(x) are distinct. Similarly to the session
initiation, the session channels is attached. The rule (S) makes use of structural
congruence. The structural congruence relation is the least congruence relation≡ on I

12

Table 2Typing Rules for Global Calculus

(G-TI)
Γ, ch@B: (s̃)α ⊢ I ⊲ ∆ · s̃[B,A] :α

Γ, ch@B: (s̃)α ⊢ A→ B : ch(ν s̃). I ⊲ ∆

(G-TC)
Γ ⊢ I ⊲ ∆ · s̃[A, B] :α j Γ ⊢ e@A:θ j Γ ⊢ x@B:θ j s∈ {s̃} j ∈ J

Γ ⊢ A→B : s〈opj, e, x〉. I ⊲ ∆ · s̃[A, B] : s◭ Σi∈Jopi(θi). αi

(G-TCI)
Γ ⊢ I ⊲ ∆ · s̃[B,A] :α j Γ ⊢ e@A:θ j Γ ⊢ x@B:θ j s ∈ {s̃} j ∈ J

Γ ⊢ A→B : s〈opj, e, x〉. I ⊲ ∆ · s̃[B,A] : s ◮ Σi∈Jopi(θi). αi

(G-TA)
Γ ⊢ x@A:θ Γ ⊢ e@A:θ Γ ⊢ I ⊲ ∆

Γ ⊢ x := e@A. I ⊲ ∆

(G-TS)
Γ ⊢ I1 ⊲ ∆ Γ ⊢ I2 ⊲ ∆

Γ ⊢ I1 + I2 ⊲ ∆
(G-TI)

Γ ⊢ e@A:bool Γ ⊢ I1 ⊲ ∆ Γ ⊢ I2 ⊲ ∆

Γ ⊢ if e@A then I1 else I2 ⊲ ∆

(G-TP)
Γ ⊢ I1 ⊲ ∆1 Γ ⊢ I2 ⊲ ∆2

Γ ⊢ I1 | I2 ⊲ ∆1 • ∆2
(G-TR1)

Γ ⊢ I ⊲ ∆, s̃1ss̃2[A,B] :α
Γ ⊢ (νs) I ⊲ ∆, s̃1s̃2 :⊥

(G-TR2)
Γ ⊢ I ⊲ ∆, s̃1ss̃2 :⊥
Γ ⊢ (νs) I ⊲ ∆, s̃1s̃2 :⊥

(G-TR3)
Γ ⊢ I ⊲ ∆, ε :⊥
Γ ⊢ (νs) I ⊲ ∆

(G-TR)
Γ · X :∆ ⊢ I ⊲ ∆

Γ ⊢ µX. I ⊲ ∆
(G-TV)

Γ, X :∆ well-formed
Γ, X :∆ ⊢ X ⊲ ∆

(G-TZ)
Γ well-formed ∀i , j. {s̃i} ∩ {s̃j} = ∅

Γ ⊢ 0 ⊲
⋃

i s̃i [Ai , Bi]end

such that| and+ are commutative monoids and such that it satisfies alpha-conversion
and the rule(νs) I1|I2 ≡ (νs) (I1|I2) for s < fn(I2).

Consider, for instance, the interaction

Buyer→ Seller : QuoteCh(ν s).

Seller→Buyer : s〈Quote, 300, x〉. I ′

and let us evaluate it in the stateσ. By applying rule (I), we get the pair (σ, (νs) Seller→
Buyer : s〈Quote, 300, x〉. I ′). Now, by applying rules (R) and (C) together in the
stateσ we get the pair (σ[x@Buyer 7→ 300], (νs) I ′).

3.3 Typing

We use a generalisation of session types [15] as the type discipline for the global calcu-
lus. The grammar of types follows.

α ::= s ◮ Σiopi(θi). αi | s ◭ Σiopi(θi). αi

| α |α | end | µt. α | t

13

whereθ, θ′, . . . range overvalue types. α, α′, . . . are session types. s ◮ Σiopi(θi). αi

is a branching input typeat session channels, indicating possibilities for receiving
any of the operators fromopi (which are pairwise distinct) with a value of typeθi ;
s ◭ Σiopi(θi). αi , a branching output typeat s, is the exact dual of the above. The
typeα1 |α2 is aparallel composition ofα1 andα2, abstracting parallel composition of
two sessions. We take| to be commutative and associative, withend, the inaction type
indicating session termination, being the identity. We demand session channels inα1

and those inα2 to be disjoint: this will guarantee a linear use of session channels.t is
a type variable, while µt.α is a recursive type, whereµt binds free occurrences oft in
α. In recursive types, we assume each recursion is guarded, i.e., inµt.α, α is ann-ary
parallel composition of input/output types. Recursive types are regarded as regular trees
in the standard way [26].

Note that session channels occur free in session types: thisis necessary to allow
multiple session channels to appear in a single session in parallel. Thus, we can faith-
fully capture the behaviour of web services where it is possible to exchange different
data simultaneously, leading to a generalisation of session types in the literature. Let us
show a simple example:

s ◭ Quote(int). end | s′ ◭ Extra(String). end

Here a participant is sending a quote (integer) ats and extra information about the
product ats′ in a single session: without using distinct session channels, two commu-
nications can get confused.

The duality for session types plays the key role to guaranteedyadic interaction [15].
Theco-type, or dual, of α, writtenα, is given as follows.

s ◭ Σiopi(θi). αi = s ◮ Σiopi(θi). αi

s ◮ Σiopi(θi). αi = s ◭ Σiopi(θi). αi

µt. α = µt. α t = t end = end

For instance, the co-type ofs ◮ Quote(int). end is s ◭ Quote(int). end, exchanging
input and output.

Each time a session is initiated via a service channel, session channels are freshly
generated. Thus, the interface of a service should indicatea vector of session names to
be exchanged, in addition to how they are used. This is represented by aservice type, in
which concrete instances of session names in a session type are abstracted, written: (˜s)α
wheres̃ is a vector of pairwise distinct session channels covering all session channels in
α, andα does not contain free type variables. (˜s) binds occurrences of session channels
in s̃ in α, which induces the standard alpha-equality.

A typing judgementhas the following form:

Γ ⊢ I ⊲ ∆

whereΓ is service typingand∆ session typing. ∆ maps session channels to their loca-
tions and session types andΓ located service channels and recursive variables to service
types and session typing, respectively. The grammar of service/session typings follow.

14

Below in s̃[A, B] we assumeA , B.

Γ ::= ∅ | Γ, ch@A: (s̃)α | Γ, x@A:θ | Γ, X :∆

∆ ::= ∅ | ∆, s̃[A, B] :α | ∆, s̃:⊥

In a service typing, three forms of assignments are used:ch@A: (s̃)α says that a service
channelch is located atA and offers a service interface represented by a service type
(s̃)α; x@A:θ says that a variablex located atA may store values of typeθ; finally, X :∆
is for recursion i.e. when the interaction recurs toX, the behaviour will own a session
typing∆.

A session typing uses the primary form of assignment ˜s[A, B] : α which says that a
vector of session channels ˜s, all belonging to a same session which is betweenA and
B, has the session typeα when seen from the viewpoint ofA. We writeΓ1, Γ2 (∆1,∆2)
if there is no overlap between the free variables/names inΓ1 (∆1) andΓ2 (∆2). The
notationfsc(∆) denotes the set of free service/session channels in∆.

The typing rules are given in Table 2. Rule (G-TC) states thatI should contain a
session typeα j betweenA andB such that its session channels contains. The commu-
nicated valuee is typed in the source (A) while the variablex is typed in the target (B),
with the same typeθ j . In the conclusion, a branching type should include the operator
op j whose value type isθ j . In (G-TC), the session type in focus is given with the
direction fromA to B, i.e. it abstracts the structure of the interaction in this session from
the viewpoint ofA. While this is consistent, we may also regard it from the receiver
viewpoint (B). Thus we have the symmetric variant (G-TCI).

Rule (G-TP) uses the linearity condition found in [15]. The the operator • is well-
defined whenever the linearity condition is satisfied and is such thats̃[A, B] : α ∈ ∆1•∆2

iff either

1. s̃[A, B] : α1 ∈ ∆1, s̃[A, B] : α2 ∈ ∆2 andα = α1 | α2;
2. s̃[A, B] : α ∈ ∆1 and{s̃} ∩ fsc(∆2) = ∅, or its symmetric case;

Note different session channels can be used in parallel, while service channels can be
shared by multiple threads of interactions.

Rule (G-TI) types session initiation. Since ˜s is to be abstracted as session chan-
nels belonging to a single session, we demand that there is ach@B : (s̃)α in the typing
environment. Since ˜s is directed fromB to A, α designates a session type seen from
B’s viewpoint resulting ins[B,A] : α where bothA andB need be mentioned since a
session is always between two parties. Note thatch@B : (s̃)α is also assumed in the
premise sincech may have already been used elsewhere (as a service channel can be
shared).

In (G-TR1), hiding of session names is introduced after the session initiation so
that they can no longer be abstracted by (G-TI). α is no longer necessary, so we
replace it with⊥. Rule (G-TR2) is used for removing unnecessary hidden session
names one by one: when ˜s is empty, we take it off with (G-TR3).

In Rule (G-TZ) we demand each session type used in the conclusion is a dis-
tinct vector of session channels andΓ is well-formed. A service typeΓ is well-formed
wheneverch@Ai : (s̃i)αi ∈ Γ (i = 1, 2) impliesA1 = A2 and (s̃1)α1 = (s̃2)α2. Moreover,
x@Ai :θi ,X :∆i ∈ Γ impliesθ1 = θ2, A1 = A2 and∆1 = ∆2. Similarly, a session typing∆

15

is well-formedwhen for all s̃1[A1, B1]α1 ands̃2[A2, B2]α2 in ∆ such that{s̃1} ∩ {s̃2} , ∅

we have ˜s1 = s̃2, A1 = A2, B1 = B2 andα1 = α2.

Proposition 1. Γ ⊢ I ⊲ ∆ impliesΓ and∆ are well-formed.

As a simple example, we type the Buyer-Seller interactionI . Service channelQuoteCh
is assigned with service type

(s) s ◭ Quote(integer). (

s ◮ QuoteAccept(null). s ◭ DeliveryDetails(null). end+

s ◮ QuoteReject(string). end)

Instead, service channelDeliveryCh has service type

(t) t ◭ DeliveryDetails(string). end

Denoting two types by (s)α1 and (t)α2 respectively, we can proveQuoteCh : (s)α1, DeliveryCh :
(t)α2 ⊢ I ⊲ ∅.

The type discipline has also a minimal typing. To formulate minimality, we use the
inclusion ordering≤, defined based on simulation as in [13] with the key justifying
rules being:

J ⊂ J′ ∀i ∈ J. αi ≤ α
′
i

s ◮ Σi∈Jopi(θi). αi ≤ s ◮ Σi∈J′opi(θi). α′i
J ⊂ J′ ∀i ∈ J. αi ≤ α

′
i

s ◭ Σi∈Jopi(θi). αi ≤ s ◭ Σi∈J′opi(θi). α′i

The relation≤ is extended pointwise to session typings and service typings. In brief,
α ≤ α′ indicatesα is the result of cutting off some branches fromα′ at zero or more
points. We now observe:

Proposition 2. LetΓ ⊢ I ⊲ ∅ for someΓ. Then there existsΓ0 such thatΓ0 ⊢ I and
wheneverΓ′ ⊢ I ⊲ ∅ we haveΓ0 ≤ Γ

′.

Theorem 3 (Subject Reduction).AssumeΓ ⊢ σ. ThenΓ ⊢ I ⊲∆ and(σ, I)→ (σ′, I ′)
implyΓ ⊢ σ′ andΓ ⊢ I ⊲ ∆′ for some∆′ such thatfsc(∆′) ⊂ fsc(∆).

4 The End-Point Calculus

4.1 Syntax

The end-point calculus is an applied version of theπ-calculus [22]. The main syntactic
terms areprocesses(P,Q, . . .) andnetworks(M,N, . . .) and are defined by the following
grammar.

P ::= ! ch(s̃). P | ch(νs̃). P | s⊲ Σiopi(ỹi).Pi

| s⊳ op〈ẽ〉. P | x := e. P | if e then P1 else P2

| P⊕ P | P | Q | (νs) P | X | µX. P | 0

N ::= A[P]σ | N | N | (νs) N | ǫ

16

Table 3Semantics of the End-Point Calculus

(EP-I)
−

A[! ch(s̃). P | P′]σ | B[ch(νs̃). Q | Q′]σ′ → (νs̃) (A[! ch(s̃). P | P | P′]σ | B[Q | Q′]σ′)

(EP-C)
σ ⊢ e ⇓ v

A[s⊲ Σiopi(xi).Pi | P′]σ | B[s⊳ opj〈e〉Q |Q′]σ′ → A[Pj | P′]σ[x7→v j] | B[Q | Q′]σ′

(EP-A)
σ ⊢ e ⇓ v

A[x := e. P | P′]σ → A[P | P′]σ[x7→v]

The first two productions for processes describe terms meantfor session initiation and
the following two are for communication. This is in the styleof [15], except ˜yi in the
second construct (branching input) donot induce binders.x := e. P assigns a valuev
to x in its store and then continues asP. The rest is all standard. Networks are paral-
lel composition of participants. The latter are represented by the termA[P]σ which
indicates a participantA whose behaviour is given byP and whose local state isσ.

4.2 Reduction

The reduction semantics for the end-point calculus followsthe π-calculus. We report
the full definition in Appendix B, but list the three key rulesin Table 3.

(EP-I) defines the session initiation: two participantA and B will synchronize
starting a session whenever they are executing a service offer ! ch(s̃). P and a request of
servicech(νs̃).Q respectively. The synchronisation will result into sharing fresh session
names ˜s local toA andB. These session names are then used in (EP-C) for commu-
nication. In (EP-C), we use assignment to local variables rather than value passing
for correspondence with the global calculus. (EP-A) updates the store associated
in each participant.

4.3 Session Types for the End-Point Calculus

As mentioned above, the aim of the end-point calculus is to give a model on which we
can project the global calculus. For this reason we need to define session types [15] as
well. We use the same set of session and service types as the global calculus.

In the end-point calculus, we have the two type judgements

Γ ⊢A P ⊲ ∆ Γ ⊢ M ⊲ ∆

respectively for processes and networks.Γ (service typing) and∆ (session typing) above
are given by the following grammar.

Γ ::= ∅ | Γ, ch@A : (s̃)α | Γ, ch@A : (s̃)α

| Γ, x@A : θ | Γ, X : ∆

∆ ::= ∅ | ∆, s̃@A : α | ∆, s̃ : ⊥

17

Table 4Session Types for Processes in the End-Point Calculus

(EP-TB)
K ⊆ J s∈ s̃ Γ ⊢ xj : θ j Γ ⊢A Pj ⊲ ∆ · s̃@A : α j

Γ ⊢ s⊲ Σi∈Jopi(xi).Pi ⊲ ∆ · s̃@A : s ◮ Σi∈Kopi(θi). αi

(EP-TS)
j ∈ J ⊆ K Γ ⊢ e : θi Γ ⊢A P ⊲ ∆ · s̃@A : α j

Γ ⊢A s⊳ opj〈e〉.P ⊲ ∆ · s̃@A : s ◭ Σi∈Kopi(θi). αi

(EP-TS)
Γ ⊢A P ⊲ s̃@A:α

Γ, ch@A: (s̃)α ⊢A ! ch(s̃). P ⊲ ∅

(EP-TR)
Γ, ch@B: (s̃)α ⊢A P ⊲ ∆ · s̃@A : α

Γ, ch@B: (s̃)α ⊢A ch(νs̃).P ⊲ ∆

(EP-TP)
Γi ⊢A Pi ⊲ ∆i Γ1 ≍ Γ2 ∆1 ≍ ∆2

Γ ⊢A P1 | Q2 ⊲ ∆1 ⊙ ∆2

As before, we stipulate that, whenever we write e.g.Γ1, Γ2, there areno free channel-
s/variables shared between two typings. The selected rules for the typing processes are
given in Table 4.

The rule (EP-TB) for input in-session communication involves branching with
distinct operators: the typing can have less branches than the real process, so that the
process is prepared to receive any operator specified in the type. Rule (EP-TS) is
its dual: the typing can have more branches than the real process, so that the process
invokes with operators at most those specified in types. Combining (EP-TB) and (EP-
TS), an output never tries to invoke a non-existent option inits matching input.

Rule (EP-TS) is for typing the inputting side of initialisation. Note wedo not
allow those session channels other than the target of initialisation to be present as the
session typing in the premise: this preventsfreesession channels to be under the repli-
cated input, guaranteeing their linear usage. The typing inthe conclusion means (by our
convention) thatch or ch does not occur inΓ. The outputting side of initialisation (rule
(EP-TR)) is analogous, except that the linearity constraint needsnot be specified. We
assume thatA andB are not identical. The fact we allowch@B : (s̃)α to occur in the
premise means an invocation to a service can be done as many times as needed (as far as
it is type correct). (EP-TP) uses the operators≍ and⊙: ∆1 ≍ ∆2 means two channels
of the same domain have a dual type each other [15]; and the result of the composition
of the dual types become⊥, which denotes the same channel cannot be composable
further. This operation guarantees a linear use of session channels. The full definition
can be found in Appendix B.

As an example, we type the end-point process of the seller, seen in Section 2. If we
consider the service types (s)α1 and (t)α2 in the previous example in Section 3.3, we
have

QuoteCh : (s)α1, DeliveryCh : (t)α2 ⊢ Seller[Protocol]σ ⊲ ∅

18

Note that, in the end-point types the service channelDeliveryCh is overlined: this is
because the channel is located at the shipper’s. This is not the case in the global calculus
as we only have a global view of channels. With well-formedness similar to the global
calculus, we have:

Proposition 4. Γ ⊢ M ⊲ ∆ impliesΓ and∆ are well-formed.

For the end-point calculus, we consider a subtyping relation on session types following
[13]. 4 This relation plays a basic role in our subsequent technicaldevelopment. The
subtyping is writtenα � β. Intuitively, α1 � α2 indicates thatα1 is more gentle, or
dually α2 is less constrained, in behaviour. The subtyping relation is given based on
simulation following [13], whose key justifying rules are:

J ⊃ J′ αi � βi

s ◮ Σi∈Jopi(θi). αi ≤ s ◮ Σi∈J′opi(θi). βi

which says that if the initial input offers more options, and if subsequent behaviours are
more gentle, then it is more gentle.

J ⊂ J′ αi � βi

s ◭ Σi∈Jopi(θi). αi ≤ s ◭ Σi∈J′opi(θi). βi

which says that if the initial output has less emissions and if subsequent behaviours
are more gentle then it is more gentle. Note this relation is different from the inclusion
ordering≤ in §3.3.

The following result says that we can always find a representative typing for a given
process, and, moreover, we can do so effectively. Such a type is minimum among all
assignable typings w.r.t. the subtyping relation, so that we call it theminimal typingof a
given term. Below and henceforth we writeΓ ⊢ M for Γ ⊢ M ⊲ ∅, similarly for Γ ⊢A P.

Definition 5 (minimal typing). Let Γ0 ⊢ M. We callΓ0 theminimal service typing of
M whenever for allΓ such thatΓ ⊢ I we haveΓ0 � Γ, where� is taken pointwise at
each channels.

Proposition 6 (existence of minimal typing).For each typable M, its minimal service
typingΓ0 exists. Further suchΓ0 is algorithmically calculable from M.

Theorem 7 (subject reduction).If Γ ⊢ N ⊲ ∆ and N→ N′ thenΓ ⊢ N′ ⊲ ∆.

Unlike the global calculus, the untyped end-point calculuscan have communication
error. Its absence is guaranteed by the type system. Let us say M has acommunication
error when:

M ≡ C[A[s⊲ Σiopi(xi).Pi |R]σ|B[s⊳ op〈e〉.Q|S]σ′]

where in both casesop < {opi} andC[] is a reduction context (i.e. a context whose hole
is not under a prefix). That is,M has a communication error when it contains an input
and an output at a common channel which however do not match inoperator names. A
basic corollary of Theorem 7 follows.

Corollary 8 (lack of communication error). If Γ ⊢ N⊲∆ and N→∗ M, then M never
contains a communication error.

4 The direction of the subtyping is converse to (and consistent with) [13].

19

5 The End-Point Projection

This section establishes a formal link from the global calculus to the end-point calcu-
lus: a global description which conforms to the three properties,connectedness, well-
threadedness and coherencycan be mapped to the end-points preserving the three desir-
able properties,type preservation, andsoundnessandcompletenessof the operational
semantics. Throughout we only consider well-typed terms for both the global and end-
point calculi.

5.1 Connectedness

To define connectedness, we need to say which participant initiates an action in a given
interactionI : this participant should be the place where the preceding event happens.
First assume we annotate recursion variable with a participant name, e.g.µXA

. I etc.

Definition 9 (initiating participants). Given a hiding-free interaction I, itsinitiating
participants, denotedtop(I), is inductively given as follows:

top(I)
def
=































{A} if I ∈ Z
∅ if I ≡ 0
top(I ′) if I ≡ µXA

. I ′

top(I1) ∪ top(I2) if I ≡ I1 | I2 or I1 + I2

where Z= {if e@A then I1 else I2,A→ B : ch(ν s̃). I ′, A→B : s〈op, e, x〉. I , x@A :=
e. I ′, XA} . If A ∈ top(I), we say A is aninitiating participant ofI.

The maptop(I) generates a set of participants that initiates the first action of I . We can
now present the definition of connectedness.

Definition 10 (connectedness).The collection ofconnected interactionsCon is induc-
tively generated as follows.

1. {0, XA} ⊆ Con.
2. A→ B : ch(ν s). I ′, A→B : s〈op, e, x〉. I ′, µXB

. I ′ andx@B := e. I ′ are inCon if
I ′ ∈ Con andtop(I ′) = {B}.

3. if e@A then I1 else I2, I1 + I2 and I1 | I2 are in Con if I1, I2 ∈ Con and {A} =
top(I1) = top(I2).

Connectedness says that, in communication actions, only the message reception leads to
activity (at the receiving participant), and that such activity should immediately follow
the reception of messages. We note connectedness enjoys a subject reduction property,
shared by well-threadedness and coherence.

5.2 Well-Threadedness

In order to formally introduce the notion of well-threadedness, we need to annotate a
global interaction with threads.

20

Definition 11 (annotated interaction).Annotated interactions, denoted byA,A′, . . .,
are given by the following grammar.

A ::= Aτ1 → Bτ2 : ch(ν s̃). A | x@Aτ := e. A | A1 |
τ
A2

| Aτ1→Bτ2 : s〈op, e, y〉. A | µτXA
. A | A1 +

τ
A2

| if e@Aτ then A1 else A2 | X
A
τ | 0

whereτi ∈ N (calledthread) andτ1 , τ2 in the first two lines.

In the abstract syntax tree of the terms in the global calculus, each node is annotated
with threads (given as natural numbers). The notions such asconnectedness easily ex-
tend to annotated interactions. The following is an annotated interaction of a previous
example:

Buyer1→ Seller2 : ch1(ν s). Seller2→ Buyer3 : ch2(ν t).

Buyer3→Seller2 : t〈op1, v1, x〉.

Seller2→Buyer1 : s〈op2, v2, y〉

Our task now is to find a notion of “consistent annotation” forannotated interactions, so
that causality specified globally can be precisely realisable locally. For this purpose it is
convenient to consider eachA as an inverted abstract syntax tree. Each node has acon-
structorwhich is annotated by either one thread or, if it is initiation or communication,
an ordered pair of threads.

Definition 12. 1. If a node inA is initialisation or communication fromB to C and
is annotated by (τ1, τ2), thenτ1 (resp.τ2) is theactive (resp. passive) thread by B
(resp. by C)of that node. If the node has other constructors, its annotating thread is
both active and passive.

2. If a node occurs (resp. directly) above some node, then theformer is a(resp. direct)
predecessorof the latter. Symmetrically we define(direct) successor.

Note if a node is a predecessor of another then the former execution should temporarily
precedes that of the latter. We can now introduce the consistency condition for thread
annotation. Below in (G2) we assume the bound name conditionfor session names.

Definition 13. An annotated connected interactionA is globally consistentor simply
consistentif the following conditions hold.

(G1) Freshness Condition:For each node ofA, if it starts with initialisation, then its
passive thread should be fresh w.r.t. all of its predecessors (if any).

(G2) Session Consistency:If a node ofA starts with a communication betweenB and
C via (say)sand another node ofA starts with a communication viasor an initial-
isation which openss, then the thread byB (resp. byC) of the former node should
coincide with the thread byB (resp. byC) of the latter node.

(G3) Causal Consistency:If a node ofA is the direct successor of another node of
A (except when the latter node is a top-level parallel composition node), then the
latter’s active thread should coincide with the former passive thread.

21

In (G3) we say a parallel composition istop-levelif its predecessors (if any) only include
parallel compositions and restrictions.

(G1) says a fresh thread starts when a service is invoked.(G2) says two distinct in-
teractions in the same session (which are, by typing, alwaysbetween the same pair of
participants) should be given the same threads w.r.t. each participant.(G3) says ifA has
an input annotated as a (passive) thread then its immediately following output should
be annotated by the same (but this time active) thread.

Below we sayI has an annotationA when removing all annotations fromA coin-
cides withI .

Definition 14 (well-threaded interactions). I is well-threadedwhen it is connected
and has a consistent annotation.

Note that well-threadedness implies connectedness (hencewell-typedness). In Ap-
pendix C, we give a type discipline accepting all and only well-threaded interactions,
from which we can derive a sound and complete inductive algorithm to check well-
threadedness.

5.3 Coherence and End-Point Projection

We now define coherence and then end-point projection. First, we give the notion of
mergeability of threads. In the rest of the paper, atyped term(in the end-point calculus)
is a typed sequentΓ ⊢A P ⊲ ∆ or Γ ⊢ M ⊲ ∆. Moreover, a relation over typed
processes or networks (in the end-point calculus) istypedif each related pair of typed
terms have the same typing.

Definition 15 (mergeability). Mergeability relation, denoted⊲⊳, is the smallest typed
equivalence over terms up to≡ closed under all typed contexts and the rule:

∀i ∈ J ∩ K. Pi ⊲⊳ Qi ∀ j ∈ J\K, k ∈ K\J. opj , opk

s⊲ ΣJopj(x j). P j ⊲⊳ s⊲ ΣKopk(xk). Qk

WhenP ⊲⊳ Q, we sayP and Q are mergeable.

The relation⊲⊳ checks whether two given processes behave without contradicting when
they come to the same course of interactions, i.e. when the same input branch is selected
by the interacting party. Thus the rules above say that we canallow differences in input
branches which do not overlap, but we do demand each pair of behaviours with the
same operation to be identical.

Definition 16 (merge operator).⊔ is a partial commutative binary operator on pro-
cesses, such that (1) ifP is a prefixed process with a service channel as its subject, then
P⊔ 0 = 0⊔ P = P; and (2)s⊲ Σi∈Jopi(yi). Pi ⊔ s⊲ Σi∈Kopi(yi). Qi is defined as:

Σi∈J∩Kopi(yi). (Pi ⊔ Qi) + Σi∈J\Kopi(yi). Pi +

+ Σi∈K\Jopi(yi). Qi

where we assume that every time⊔ is applied in the defining clause, say toP andQ, we
haveP ⊲⊳ Q; and otherwise it is the identity. When these conditions arenot satisfied,
the operation is undefined.

22

Before introducting projection onto threads, we add a further annotation to each
recursion and each recursion variable. GivenµτXA.A in an annotated interaction, let
{τi} be the set of threads occurring in, butnot initiated in,A. Then we further annotate
this recursion asµτ:{τi }X and each freeXA

τ in A as XA
τ:{taui }

. The added information is

used for taking off unnecessary recursion from endpoint processes.5

Definition 17 (thread projection). Let A be consistently annotated. Then the partial
operationTP(A, τ) is defined as follows:

– TP(Aτ1 → Bτ2 : b(ν s̃). A, τ)
def
=



















b(νs̃). TP(A, τ1) if τ = τ1
! b(s̃). TP(A, τ2) if τ = τ2
TP(A, τ) otherwise

– TP(Aτ1→Bτ2 : s〈opi, ei , xi〉. A, τ)
def
=



















s⊳ op〈e〉. TP(A, τ) if τ = τ1
s⊲ opi(xi). TP(A, τ) if τ = τ2
TP(A, τ) otherwise

– TP(if e@Aτ
′

then A1 else A2, τ)
def
=

{

if e then TP(A1, τ
′) else TP(A2, τ

′) if τ = τ′

TP(A1, τ) ⊔ TP(A2, τ) otherwise

– TP(x@Aτ
′

:= e. A, τ)
def
=

{

x := e. TP(A, τ′) if τ = τ′

TP(A, τ) otherwise

– TP(A1 ⊕
τ′ A2, τ)

def
=

{

TP(A1, τ
′) ⊕ TP(A2, τ

′) if τ = τ′

TP(A1, τ) ⊔ TP(A2, τ) otherwise

– TP(A1 |
τ′

A2, τ)
def
= TP(A1, τ

′) | TP(A2, τ
′)

– TP(µτ
′:{τ̃i }XA

. A, τ)
def
= µX. TP(A, τ) if τ ∈ {τ̃i}, TP(A, τ) if else.

– TP(XA
τ:{τ̃i}
, τ)

def
= X if τ ∈ {τ̃i}, 0 if else.

– TP(0, τ)
def
= 0

If TP(A, τ) is undefined then we setTP(A, τ) =⊥.

Note the thread projection already uses the definedness of the⊔ operator. The notion
of coherence assumes this thread-level mergeability, extending it to inter-thread consis-
tency. As noted in§2, the need for inter-thread consistency arises because thedescrip-
tion of the behaviour of a service may as well be scattered over more than one places
in a global description. Since each service channelch uniquely defines a service, we
can collect all threads contributing to its behaviour by taking the passive thread of each
session initialisation atch.

We now define coherence of well-threaded annotated interaction. Below, given an
annotated interactionA, we writeτ1 ≡A τ2 wheneverτ1 andτ2 in A belong to the same
service channel.

5 The use of this added information does not affect behaviour, but is needed for type preservation.
The added annotation is only used for thread projection.

23

Definition 18 (coherence).We sayA is coherentif it is consistently annotated (hence
well-threaded) and satisfies:

1. For each threadτ in A, TP(A, τ) is well-defined.
2. For each pair of threadsτ1, τ2 in A with τ1 ≡A τ2, we haveTP(A, τ1) ⊲⊳ TP(A, τ2).

Proposition 19. Given a well-typed I, it is decidable whether I is coherent (hence con-
nected and well-threaded) or not.

We can now define the endpoint projection. Below we call an interactionI restriction-
free whenever it contains no terms of the form(νs) I ′ as its subterm. Moreover, [τ]
denotes the equivalence class (≡A) of τ and is formally defined in Appendix C.1

Definition 20 (end-point projection). Let I be a restriction-free and coherent inter-
action with free session names ˜s and letA be one of its consistent annotations. Then
the end point projection of(νs̃) A underσ, denotedEPP((νs̃) A, σ), is given as the
following network.

(νs̃) ΠA∈part(A) A[Π[τ]

⊔

τ′∈[τ]

TP(A, τ′)]σ@A

wherepart(A) denotes the set of participants mentioned inA.

Remark. (Invariance of EPP w.r.t. Annotations) The result of the projection map
defined above doesnot depend on a specific consistent annotation whenI has no free
session channels. See [11, Prop. 14, page 91] for details.

5.4 Pruning and Main Theorems

Suppose we have an interaction composed by two branches where the first two interac-
tions areBuyer → Seller : ch(ν s). Seller→Buyer : s〈ack〉 and then in one branch we
haveBuyer→Seller : s〈go〉 and in the otherBuyer→Seller : s〈stop〉. We then get that
Buyer andSeller are respectively projected as

ch(νs).s⊲ ack().s⊳ go〈〉 ⊕ ch(νs).s⊲ ack().s⊳ stop〈〉

! ch(s).s⊳ ack〈〉.(s⊲ ok() + s⊲ stop())

By the dynamics of the choice operator, dropping one branch reduces toSeller →
Buyer : s〈ack〉. Buyer→Seller : s〈go〉. Its end-point projection is the network:

Buyer[ch(νs).s⊲ ack().s⊳ go〈〉]σ@Buyer |

Seller[! ch(s).s⊳ ack〈〉.s⊲ go()]σ@Seller
(2)

However the original end-point projection reduces as:

Buyer[ch(νs).s⊲ ack().s⊳ go〈〉]σ@Buyer |

Seller[! ch(s).s⊳ ack〈〉.(s⊲ go() ⊕ s⊲ stop())]σ@Seller
(3)

24

There is discrepancy between (2) and (3): the former haslost one branch, while (3)
keeps it. Notice this lost branch is inessential from the viewpoint of the internal dy-
namics of the configuration: “stop” is never used the global description obtained from
reduction.

This example shows that a global interaction can lose information during reduction
which is still kept in the corresponding reduction in its EPP, due to persistent behaviour
at service channels. This motivates the introduction of theasymmetric relation ofprun-
ing that we shall use to state a property of the end-point projection. Below we write!R
whenR is an-fold composition of replications.

Definition 21 (pruning). AssumeΓ ⊢A P ⊲ ∆, Γ, Γ′ ⊢A Q ⊲ ∆ and, moreover,
Γ ⊢A P ⊲ ∆ is a minimal typing. If further we haveQ ≡ Q0|!R whereΓ ⊢ Q0 ⊲ ∆,
Γ′ ⊢A R andP ⊲⊳ Q0, then we writeΓ ⊢A P ≺ Q ⊲ ∆ or P ≺ Q for short; and sayP
prunes Q.

The pruningP ≺ Q indicatesP is the result of cutting off “unnecessary branches” of
Q, in the light ofP’s own typing. ≺ is in fact a typed strong bisimulation in the sense
that P≺ Q means they have precisely the same observable behavioursexcept for the
visible input actions at pruned inputs, either branches or replicated channels.Thus in
particular it satisfies the following condition.

Lemma 22 (pruning lemma). ≺ is a strong reduction bisimulation in the sense that
it satisfies the following two clauses:

1. If M ≺ N and M→ M′ then N→ N′ such that M′ ≺ N′.
2. If M ≺ N and N→ N′ then M→ M′ such that M′ ≺ N′.

Further ≺ is transitive.

As noted, ≺ satisfies a stronger property of being a strong bisimulationw.r.t. typed
transitions under the minimal typing of the l.h.s. processes. We have finally arrived at
the main results of this paper.Below and henceforth we use I, I ′, . . . to denote consis-
tently annotated interactions.≡rec denotes the extension of≡with the folding/unfolding
of recursion.

Theorem 23 (End-Point Projection). Assume
I is coherent. Assume furtherΓ ⊢ I ⊲ ∆ andΓ ⊢ σ. Then we have:

1. (type preservation)If Γ ⊢ I ⊲ ∆ is the minimal typing of I, thenΓ ⊢ EPP(I , σ) ⊲∆′

where∆′ is the result of replacing each occurrence of type assignment in ∆, say
s̃@A : α, with s̃ : ⊥. In particular, if Γ ⊢ I ⊲ ∅ thenΓ ⊢ EPP(I , σ) ⊲ ∅.

2. (soundness)if EPP(I , σ) → N then there exists I′ such that(σ, I) → (σ′, I ′) and
EPP(I ′, σ′) ≺ ≡recN.

3. (completeness)If (σ, I)→ (σ′, I ′) thenEPP(I , σ)→ N such thatEPP(I ′, σ′) ≺ N.

25

Proof Outline. For (1), type preservation, we first note the participants donot matter in
the minimal typing for processes, i.e. we haveΓ ⊢ ΠiAi [Pi]σi ⊲ ∆ iff Γ ⊢ Πi Pi ⊲ ∆ as far
as eachσi is typable underΓ and assignment of channels to participants conform toΓ.
Thus without loss of precision we only consider process typing from now on. We use
the following auxiliary typing systems.

– The minimal typing system for annotated terms in the global calculus, with sequent
Γ ⊢minI ⊲ ∆.

– The per-thread minimal typing system for the same, with sequentΓ ⊢τminI ⊲∆, which
assign the minimal typing to the specified threadτ of I .

– The minimal typing system for the endpoint calculus, with sequentΓ ⊢minP ⊲ ∆.

These typing systems are given in [11,§10,12,16]. If a grouping of free session names
in P is assumed, each of these systems determines the typing uniquely once a term
(and a thread in the third case) is given. We therefore assumesuch a grouping (we can
stipulate any appropriate one). We can then show the following.

(a) Γ ⊢minI ⊲ ∆ iff ⊔Γi ⊢minI ⊲ ⊔∆i where{τi} exhausts the threads inI and, for eachτi ,
we haveΓi ⊢

τi
minI ⊲ ∆i .

(b) Γi ⊢
τi
min I ⊲ ∆i iff Γi ⊢minTP(I , τi) ⊲ ∆′i where∆′ is the result of replacing each (e.g.)

s̃[A, B] : α in ∆ with s̃ : ⊥.
(c) Given{Pi}, supposePi ⊲⊳ P j for eachi, j ∈ I . Then⊔iΓi ⊢min⊔i Pi ⊲ ⊔i∆i .

where⊔iΓi and⊔i∆i are the appropriate merge of typings, defined following the merge
of processes. Now supposeΓ ⊢min I ⊲ ∆ and{τi} are the threads inI . By (a) we have
Γ = ⊔Γi and∆ = ⊔∆i such thatΓi ⊢

τi
minI ⊲ ∆i . Hence by(b) we haveΓi ⊢minTP(I , τi) ⊲ ∆i

for eachτi . Hence by(c) we haveΓ ⊢min⊔iTP(I , τi) ⊲ ∆, as required.
For (2) and (3), consider coherentI = Πi I i and its projection:

M
def
= A[{Pl}l∈L]σA | B[{Qm}m∈M]σB | C[{Rn]n∈N}σC

Above for simplicity we consider only three participants, ignore hiding, and let eachPl

etc. be a thread projection (the reasoning is similar in the general case).
For (2), soundness, assumeM → M′. By induction on the reduction rules, there is

the corresponding redex inI . The rest is case analysis of the redex, taking the results
of reducingI i of I and either a thread (if it is not interaction) or a pair of threads (if
it is). We then collect all threads again and compare the results. As a simple case,

Pl
def
= x := e.P′l results inP′l with an altered state, whileI i

def
= x@A := e.I ′i results inI ′i

with the same state. The projection ofI ′i is the same as the projection ofI i except it loses
x := e from the corresponding thread, in this casePl , that is we getP′l . For all other
cases it is possible the projection loses some branches or the whole replicated process,
which we equate by≺ . Session initiation and recursion are the most interestingcases.

If the redex is obtained byPl
def
= ! ch(s̃). P′l andQm

def
= ch(νs̃). Q′l then we must have

I i
def
= A1 → B2 : ch(ν s̃).I ′i (with abuse of notation) which results inI ′i . The projection

of the latter must haveP′l andQ′m and may (or may not) have! ch(s̃). P′′l (ch session
initiation in other threads). The thesis for this case is then implied by the following two
properties of pruning and merge operator:

26

– P ≺ P⊔ Q
– if P⊔ Q = ! ch(s̃). R thenP = ! ch(s̃). P′ andQ = ! ch(s̃). Q′ andR= P′ ⊔ Q′.

In the recursion case, we have the redexPl
def
= µX. P′l . It is important to observe that

an unfolding for applying recursion inEPP(I , σ) does not fully correspond to an un-
folding in I . In fact an unfolding in the latter may imply many unfolding in EPP(I , σ).
Nevertheless, it is not difficult to prove that we can always unfold further inEPP(I , σ)
so to obtain the projection of unfolding inI . Then, we can prove this case by exploiting
induction hypothesis.

(3), completeness, is by a similar reasoning. For details, see [11]. ⊓⊔

By Corollary 8 and Lemma 22, Theorem 23 immediately implies:

Corollary 24. In 2 below, we let≺ rec
def
= (≺ ∪ ≡rec)∗.

1. (error freedom)If Γ ⊢ I andΓ ⊢ σ, thenEPP(I , σ) has no communication error.
2. (soundness)if EPP(I , σ) →n N then there exists I′ such that(σ, I) →n (σ′, I ′)

andEPP(I ′, σ′) ≺ ≡recN.
3. (completeness)If (σ, I)→n (σ′, I ′) thenEPP(I , σ)→n N such thatEPP(I ′, σ′) ≺ N.

Proof. (1) is immediate from Theorem 23 (1) and Corollary 8 (page 19). (2) and (3) are
by Lemma 22 (1,2) and Theorem 23 (2, 3), combined with the standard tiling argument
and induction onn. For example, for (2), the case whenn = 1 is Theorem 23 (2).
Suppose the statement holds up ton reductions and assumeEPP(A, σ) →n+1 N. By
definition this meansEPP(A, σ) →n N0 → N for someN0. Hence by (IH) there exists
A′0 such that (σ, A) →n (σ′0, A′0) andEPP(A′0, σ

′
0) ≺ recN0. By N0 → N and since

≺ rec immediately satisfies the same simulation property as≺ , EPP(A′0, σ
′) → N′′

such thatN′ ≺ recN′′. By Theorem 23 (2) again we have (σ′0,A
′
0) → (σ′,A′) such that

EPP(A′, σ′) ≺ N′′. By the transitive of≺ REC we haveEPP(A′, σ′) ≺ N′ as required.
⊓⊔

6 Extensions and Applications of EPP Theory

6.1 Local variable declaration.

We consider extensions and applications of the theory of EPP. First, we augment the
syntax of global/local calculi with one useful construct,local variable declaration:

newvar x@A := ein I newvar x := ein P

This construct is indispensable especially for repeatedlyinvocable behaviours, i.e. those
of services. Suppose a bookseller is invoked by two buyers simultaneously, each asking
a quote for a different book. If these two threads share a variable, these two requests
will get confused. The use of local variable declaration canavoid such confusion. The
dynamics and typing of this construct are standard [26]. Forendpoint projection, it is
treated just as assignment.

27

6.2 Intra-Participant Interaction.

In §3.3, we demanded that, in the grammar of service typing,A , B in s̃[A, B]. This
means well-typed global terms never have an intra-participant interaction. This is a nat-
ural assumption in a business protocol which primarily specifies inter-organisational in-
teractions: however it can be restrictive in other contexts. Under connectedness (whose
definition does not change), we can easily adapt the EPP theory to the inclusion of intra-
participant interactions. First, the typing rules in Table2, page 13, takes off (G-TCI)
and refines (G-TC) so that the typing ˜s[A, B] : α always reflects the direction of the
interaction just inferred. This allows us to treat the case whenA andBare equal. The key
change is in well-threadedness. WhenA = B, the condition (G2) (session consistency)
in Definition 13 is problematic since we do not know which of the two threads should
be given to which participant. However stipulating the following condition solves this
ambiguity:

Local Causal Consistency: If there is a downward sequence ofactions which starts from
an active threadτ and ends with an action in whichτ occurs for the first time (i.e.τ
occurs in no intermediate actions in the sequence), then thelatter τ occurs passively.

We also note this condition is aconsequenceof (G1–3) in the theory without intra-
participant interaction so that we are not adding any extra constraint to inter-participant
interactions.

6.3 Name Passing.

An extension which is technically significant and practically useful is the introduction
of channel passing. Channel passing is often essential in business protocols.As an
example, consider the following refinement of Buyer-SellerProtocol.

Buyer wants to buy a hardware fromSeller, but Buyer knows noSeller’s ad-
dress on the net, i.e. it does not knowSeller’s service channel. The only thing
Buyer knows is a service channelhardware of aDirectoryService, which will
send back the address of aSeller to Buyer which in turn interacts with that
Seller through the obtained channel.

In such a situation,Buyer has no prior knowledge of not only the seller’s channel but
also the participant itself. In a global description including its typing, participant names
play a basic role. Can we leave the name of a participant and its channels unknown and
still have a consistent EPP theory? This has been an open problem left in WS-CDL’s
current specification (which allows channel passing only for a fixed participant). Below
we restrict our attention to service channel passing, excluding session name passing
(which poses an additional technical issue [15]).

First, at the level of he endpoint calculus, it suffices to use the channel passing in
the standardπ-calculus.

DirectoryService(s).s(y).y(t).P

28

which describes the initial behaviour ofBuyer. Notey is an imperative variable, so that
y(t).P first readsthe content ofy then uses it for communication. The typing rules are
extended accordingly.

In the global calculus, we introduce a syntactic variableY, called aparticipant
placeholder, for denoting anonymous participants. For example we can write:

A→ Y : x(ν s̃). I Y→Y′ : s〈op, e, y〉. I

The newly addedA→ Y : x(ν s̃). I intuitively says:

A starts a session with session namess̃ on the service channel stored in x at
the location A.

The participant at which the service is offered is left unknown by placing a placeholder
Y. However this will be instantiated once the variablex atA is inspected. For example, if
x is evaluated toch@B in the store, the interaction takes place as inA→ B : ch(ν s̃). I .

As an example, we present the buyer-seller-directory scenario discussed above:

Buyer→ Directory : hardware(ν s).

Directory→Buyer : s〈sell, hware@amazon.co.uk, x〉.

(Buyer→ Y : x(ν s′). Y→Buyer : s′〈OK, data, y〉 |

Buyer→Directory : s〈more, ”” , z〉.

Directory→Buyer : s〈sell, hardware@pcworld.co.uk, x〉.

Buyer→ Y′ : x(ν s′′). Y′→Buyer : s′′〈OK, data, y〉)

Note that, depending on the channel sent fromDirectory, Y and Y′ are assigned to
different participants.

The dynamics of the global calculus adds the rule which infers:

(σ, A→ Y : x(ν s̃). I)→ (σ, (νs̃) I [B/Y])

whenever we haveσ@A(x) = ch@B.
For types, we first extend the basic typesθ with (s̃)α. We then add, with the obvious

extension to the syntax of types:

Γ ⊢ x@W1 : (s̃)α Γ ⊢ I ⊲ ∆ · s̃[W2,W1] : α
Γ ⊢W1 →W2 : x(ν s̃). I ⊲ ∆

Other typing rules can be extended to deal with terms containing the participant variable
Y in the same manner.

Finally, for the EPP theory, we need no change in the notion ofconnectedness. For
well-threadedness, we first annotate placeholders regarding, e.g.A → Y : x(ν s̃). I as
the start of a new thread forY, so we annotate it asAτ1 → Yτ2 : x(ν s̃). I with τ2
fresh. The definition of well-threadedness remains the same. Coherence however needs
additional consideration. The variablex@A can store different channels from different
participants. For this purpose we use a typing system which records a possible set of
assignment, in the shapex@W1 : C whereC is a set of channels which may be instan-
tiated intoC. If some concrete channel is inC, the behaviour of that channel becomes

29

constrained by coherence. This setC is inferred, starting from some fixed set, by adding
ch(as inx@W1 : C∪{ch@B}) when we infer, e.g.W1→W2 : s〈opj, ch@B, x〉. I , where
Wi can be either of participants or placeholders.

Leaving the technical details to [11], we give a flavour of howthis extension works
by the end-point projection of the example above. We first consider the annotated inter-
action for placeholders.

Buyer1 → Y3 : x(ν s′). Y3→Buyer1 : s′〈OK, data, y〉

In the projection of this thread, we have placed a hole− which should be substituted
with the appropriate service channels.

TP(A, 3) = ! (s′). s′ ⊳ OK〈data〉

Thus, checking coherence consists in updating the definition of the functionthreads
which induces the thread equivalence classes. But what equivalence classes should
threads 3 and 4 belong to? We can use the prediction of all the possible valuesx can
assume at runtime, i.e.hware@amazon.co.uk andhardware@pcworld.co.uk. We have
to make sure that thread 3 belongs to boththreads(A, hware) andthreads(A, hardware).
Then, if we are end-point projecting inamazon.co.uk we will substitutehware to in
both thread projections, and if we are end-point projectingpcworld.co.uk we will sub-
stitutehardware instead.

6.4 Conformance.

By relating global descriptions to their local counterpart, the presented theory allows us
to make the best of the rich results from the study of process calculi. One such applica-
tion is conformance checking(and its dynamic variant, runtime monitoring), discussed
in Section 1. Our purpose is to have a formal criteria to say the communication be-
hvaiour of a programP conforms to a global specificationI .

In process algebras, conformance checking verifies whetherthe behaviour of a pro-
cess follows that of a specification, the latter also given as(or representable as) a pro-
cess. As a theoretical basis of the notion of conformance, wecan use behavioural theo-
ries such as (inverse of) simulation or bisimulation. In thepresent context, our purpose
is to verify whether an implemented system, sayP, conforms to a well-typed descrip-
tion in the global calculus. Through the use of the end-pointprojection, we can reduce
this problem to the conformance between endpoint processes, allowing us to use the
standard theory. We illustrate one basic instance in the following.

The conformance checking we consider starts from the use of type information. Let
I be a global description andA be a participant whose behaviour we are interested in.
Let S be an EPP ofI ontoA. Let P be a program which is supposedly implements the
specificationI at the participantA. Since the end-point projection generates a process
whose typing coincides with that of the original global description, we can first check
whetherP can be typed under the minimal typing associated withS. If we cannot, then
P does not conform toI .

30

Once we know the typing ofP conforms to that ofS, we can proceed to validation
of behavioural conformance. As an example, letP be given by:

QuoteCh(νs). s⊲ Quote(x).

if (x ≤ 100)then s⊳ Accept〈〉 else s⊳ Reject〈〉

which may be used in the following configuration:

Buyer[P] | Seller[! QuoteCh(s). s⊳ Quote〈300〉.

s⊲ (Accept() + Reject() + Restart())]

Suppose we wish to check whether thisP, as the behaviour ofBuyer, conforms to a
global specification given as follows.

Buyer→ Seller : QuoteCh(ν s).

Seller→Buyer : s〈Quote, 300, x〉.

Buyer→Seller : s〈Accept〉 + Buyer→Seller : s〈Reject〉

We have already seen the end point projection of the specification above is given as
follows.

Buyer[QuoteCh(νs). s⊲ Quote(x).

(s⊳ Accept〈〉 ⊕ s⊳ Reject〈〉)] |

Seller[! QuoteCh(s). s⊳ Quote〈300〉.

s⊲ (Accept() + Reject())]

Let the endpoint process inhabitingBuyer above to beS. First, we can check the ty-
pability quite easily, in the sense thatP is typable under the minimal typing ofS. For
example, the minimal type for the channelQuoteCh in S is given as

s◭ Quote(int). s ◮ (Accept(null) + Reject(null))

Call this typeα. Thenα is not the minimal type ofP at the same channel, but it is indeed
a type assignable toch.

Second, on the basis of well-typedness, we check the conformance of behaviour
using a typed transition relation. The transition we consider has the sequent of the form:

(Γ ⊢ (Q, σ) ⊲ ∆)
l
−→ (Γ′ ⊢ (Q′, σ′) ⊲ ∆′)

Following the framework in [5, 37],
l
−→ is typedin the sense that we only consider those

actions deemed possible byΓ and∆. In particular, ifΓ or ∆ specifies input branches

which are less thanQ, then inputs at the extra branches do not take place. We write
l̂
=⇒

for the standard weak transition abstracting the silent transition. We can then define the
following conformance relation (we include typability: asalways we fix an appropriate
grouping of free session channels if any).

31

We say a type relationR over typed terms in the endpoint calculus is aweak
conformanceiff, wheneverΓ ⊢ P0RS0 ⊲ ∆, we have: (1)Γ and∆ are the

minimal typings ofS; and (2) (Γ ⊢ P0 ⊲ ∆)
l
−→ (Γ′ ⊢ P′0 ⊲ ∆′) implies

(Γ ⊢ S0 ⊲ ∆)
l̂
=⇒ (Γ′ ⊢ S′0 ⊲ ∆′) such thatΓ ⊢ P′0RS′0 ⊲ ∆. If Γ ⊢ P0RS0 for

some weak conformanceR, we sayP0 conforms to S0.

Thus (apart from typability) the conformance ofP0 to S0 says that all visible behaviours
of P0 are within what is specified inS0. We can indeed check that, forP andS above,
P conforms toS in this sense. Thus this conformance is about safety: depending on the
application needs, we may as well use a more stringent notionof conformance.

In summary, letI be a global description consisting of the participantA as well as
other participants. SupposeP is a program which implementsA’s behaviour. Then we
can check the conformance ofP against the specificationI by projectingI to A, which
we callS, and checkP conforms toS, using the conformance relation noted above. The
conformance ofP to S may be checked through either hand-calculation (coinduction),
model checking, mechanical syntactic approximation, or runtime monitoring.

7 Conclusions

This paper introduced a new formalism based on global description of communication
behaviour, and the corresponding appliedπ-calculus. Both calculi are based on a new
extension of session types, which can handle parallel interaction in one session. A the-
ory of endpoint projection is developed, giving the three well-structuredness conditions
on global descriptions. The sound and complete mapping fromthem to the correspond-
ing endpoint processes is established.

Global descriptions have been practiced in various engineering contexts for a long
time: the present work is a trial to realise its potential as ageneral programming method,
centring on type structures for communication and the end-point projection. The EPP
theory needs be further explored for all basic concurrent programming primitives, in-
cluding general sequencing, various mutual exclusion operations, exceptions, timeout
and other useful primitives. While channel passing in our language can encode a syn-
chronisation mechanism, a valuable future topic is its interaction with primitives for
locking primitives and software transaction memory, sincethe notion of atomicity un-
dergoes a fundamental change when we move to communication-centered program-
ming.

References

1. M. Abadi and A. D. Gordon. A calculus for cryptographic protocols: The spi calculus.
Information and Computation, 148(1):1–70, Jan. 1999.

2. R. Amadio, G. Boudol, and C. Lhoussaine. The receptive distributed pi-calculus. InProc. of
the FST-TCS ’99, volume 1738 ofLNCS. Springer-Verlag, 1999.

3. J. Baeten, H. van Beek, and S. Mauw. Specifying internet applications with DiCons. InSAC
’01, pages 576–584, 2001.

32

4. N. Benton, L. Cardelli, and C. Fournet. Modern concurrency abstractions for C#.ACM
Trans. Program. Lang. Syst., 26(5):769–804, 2004.

5. M. Berger, K. Honda, and N. Yoshida. Sequentiality and theπ-calculus. InProc. TLCA’01,
2001.

6. M. Berger, K. Honda, and N. Yoshida. Genericity and the pi-calculus. InProc. FOSSACS’03,
2003.

7. K. Bhargavan, C. Fournet, and A. Gordon. Verified reference implementations of
WS-Security protocols.To appear in WS-FM ’06, 2006.

8. B. Blanchet. An efficient cryptographic protocol verifier based on Prolog rules. In CSFW,
pages 82–96, 2001.

9. E. Bonelli, A. B. Compagnoni, and E. L. Gunter. Correspondence assertions for pro-
cess synchronization in concurrent communications.Journal of Functional Programming,
15(2):219–247, 2005.

10. N. Busi, R. Gorrieri, C. Guidi, R. Lucchi, and G. Zavattaro. Choreography and orchestration
conformance for system design. InCOORDINATION, volume 4038 ofLNCS, pages 63–81,
2006.

11. M. Carbone, K. Honda, N. Yoshida, R. Milner, G. Brown, andS. Ross-Talbot. Theo-
retical basis of communication-centred concurrent programming (w3c working note ver-
sion). http://www.dcs.qmul.ac.uk/∼carbonem/cdlpaper/workingnote.pdf. To be published
from W3C, August 2006.

12. M. Dezani-Ciancaglini, D. Mostrous, N. Yoshida, and S. Drossopoulou. Session Types for
Object-Oriented Languages. InProceedings of ECOOP’06, LNCS, 2006.

13. S. Gay and M. Hole. Subtyping for session types in the pi calculus. Acta Informatica,
42(2-3):191–225, Nov. 2005.

14. K. Honda. Composing processes. InProceedings of POPL’96, pages 344–357, 1996.
15. K. Honda, V. T. Vasconcelos, and M. Kubo. Language primitives and type discipline for

structured communication-based programming. InESOP ’98, pages 122–138. Springer,
1998.

16. K. Honda, N. Yoshida, and M. Berger. Control in theπ-calculus. InProc. Fourth ACM-
SIGPLAN Continuation Workshop (CW’04), 2004.

17. A. Igarashi and N. Kobayashi. A generic type system for the pi-calculus. InPOPL, pages
128–141, 2001.

18. International Telecommunication Union. Recommendation Z.120: Message sequence chart,
1996.

19. N. Kobayashi, B. Pierce, and D. Turner. Linear types andπ-calculus. InProceedings of
POPL’96, pages 358–371, 1996.

20. C. Laneve and L. Padovani. Smooth orchestrators. InFoSSaCS ’06, LNCS, pages 32–46,
2006.

21. R. Milner. The polyadicπ-calculus: A tutorial. InLogic and Algebra of Specification.
Springer-Verlag, Heidelberg, 1993.

22. R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes, I and II.Information
and Computation, 100(1):1–40,41–77, Sept. 1992.

23. R. M. Needham and M. D. Schroeder. Using encryption for authentication in large networks
of computers.Commun. ACM, 21(12):993–999, 1978.

24. OMG. Unified modelling language, version 2.0, 2004.
25. PI4SOA. http://www.pi4soa.org.
26. B. C. Pierce.Types and Programming Languages. MIT Press, 2002.
27. B. C. Pierce and D. Sangiorgi. Typing and subtyping for mobile processes.Mathematical

Structures in Computer Science, 6(5):409–453, Oct. 1996.
28. B. C. Pierce and D. N. Turner. Pict: A programming language based on the pi-calculus. In

Proof, Language and Interaction: Essays in Honour of Robin Milner. MIT Press, 2000.

33

29. S. Qadeer, S. K. Rajamani, and J. Rehof. Summarizing procedures in concurrent programs.
In POPL, 2004.

30. S. Ross-Talbot and T. Fletcher. Ws-cdl primer. Unpublished draft, May 2006.
31. D. Sangiorgi. Uniform receptive. InICALP, 2004.
32. D. Sangiorgi. Modal theory. InICALP, 2005.
33. K. Takeuchi, K. Honda, and M. Kubo. An interaction-basedlanguage and its typing system.

In PARLE’94, volume 817 ofLNCS, pages 398–413, 1994.
34. W. van der Aalst. Inheritance of interorganizational workflows: How to agree to disagree

without loosing control?Information Technology and Management Journal, 2(3):195–231,
2002.

35. V. T. Vasconcelos, A. Ravara, and S. J. Gay. Session typesfor functional multithreading. In
CONCUR ’04, LNCS, pages 497–511, 2004.

36. W3C WS-CDL Working Group. Web services choreography description language version
1.0. http://www.w3.org/TR/2004/WD-ws-cdl-10-20040427/.

37. N. Yoshida, M. Berger, and K. Honda. Strong Normalisation in the π-Calculus. In
Proc. LICS’01, pages 311–322. IEEE, 2001. The full version to appear inJournal of Inf.&
Comp..

34

A An Example of Endpoint Projection

In the following we illustrate the formal notion of endpointprojection we have devel-
oped in the paper using a fairly large toy example involving five participants. First, we
explain the example in English; then we introduce the description in the global calculus;
finally we project the description to endpoint processes.

A.1 Global Description in English

The example is an extension of the buyer-seller example introduced in section 2. The
participants involved in this protocol are

1. Buyer (B)
2. Seller (S)
3. Vendor (V)
4. CreditChecker (CC)
5. RoyalMail (RM)

The protocol proceeds as follows:

1. Buyer requests a servicechCC for company check to the credit checkerCred-
itChecker by sending its name.

2. At this pointCreditChecker can either give a positive or negative answer.
3. If the answer is positive:

(a) Buyer asksSeller for a quote about productprod;
(b) Seller then asksVendor for servicechV

(c) Seller starts recursion and asksVendor for a quote about productprod;
(d) Vendor replies with a quotequote;
(e) Seller forwardsquote to Buyer increasing it by 10 units (quote+10);
(f) if the quote is reasonable (reasonable(quote+ 10)) then:

i. Buyer sendsSeller a confirmation (quoteOK) together with the credit (cred);
ii. Seller then contactsCreditChecker for checking the credit;
iii. If the credit is good then:

A. Seller contactsShipper (servicechS h);
B. Seller sends the delivery address;
C. Shipper sends a confirmation;
D. Seller forwards confirmation toBuyer;

iv. If the credit is bad:
A. CreditChecker tells Buyer;
B. Buyer tells Seller terminating the protocol;

(g) if the quote is not reasonable the protocol goes back to point 3c;

4. If the answer is negative then the protocol terminates.

35

A.2 Global Description in the Calculus

The global description consists of several components for readability. We directly give
annotated interaction. The main description is:

1. B1→ CC2 : chCC(ν s). CC2→B1 : s〈ack〉.
2. B1→CC2 : s〈companyCheck, sellerName, compName〉.
3. {

4. CC2→B1 : s〈good〉. Igood

5. +

6. CC2→B1 : s〈bad〉. 0
7. }

whereIgood in Line 4 is:

1. B1→ S3 : chS(ν t). S3→B1 : r〈ack〉.
2. B1→S3 : t〈quoteReq, prod, prod〉.
3. S3→ V4 : chV(ν r).
4. V4→S3 : r〈ack〉.
5. µX3

. {

6. S3→V4 : r〈quoteReq, prod, prod〉.
7. V4→S3 : r〈quoteRes, quote, quote〉.
8. S3→B1 : t〈quoteRes, quote + 10, quote〉.
9. if reasonable(quote)@B1 then
10. B1→S3 : t〈quoteOK, cred, cred〉.
11. S3→ CC5 : chCC(νu).
12. CC5→S3 : u〈ack〉.
13. S3→CC5 : u〈personalCreditCheck, cred:adr, cred:adr〉.
14. {

15. CC5→S3 : u〈good〉. I ′good

16. +

17. CC5→S3 : u〈bad〉.
18. S3→B1 : t〈yourCreditIsBad〉. 0
19. }

20. else B1→S3 : t〈quoteNotOK〉. X3

21. }

whereI ′good in Line 15 is:

1. S3→ R6 : chR(ν p).
2. R6→S3 : p〈ack〉.
3. S3→R6 : p〈deliv, adr, adr〉.
4. R6→S3 : p〈conf〉.
5. S3→B1 : t〈conf〉. 0

We can check these descriptions are typable, strongly connected, well-threaded and
coherent. For connectedness, the descritption given aboveuses a lot ofacks. As we
discussed in the long version, many of these acks are in fact unnecessary by using a
relaxed notion of connectedness.

36

A.3 End-Point Projection of the Global Interaction

Following the definition of EPP in the paper, we first project the global descrtiption
onto each thread. The first one isBuyer’s only thread.

TP(I , 1) = chCC(νs). s⊲ ack(). s⊳ companyCheck〈sellerName〉.

{ s⊲ good(). chS(νt). t ⊲ ack(). t ⊳ quoteReq〈prod〉.

µX. t ⊲ quoteRes(quote).

if reasonable{quote} then t ⊳ quoteOK〈cred〉.

{t ⊲ yourCreditIsBad()

+

t ⊲ conf()}

else t ⊳ quoteNoteOK〈〉. X

+

s⊲ bad(). 0 }

Note this thread starts before the recursion and go through inside the (global) recursion.
Thus the projected endpoint behaviour also contains recursion.

The next projection is onto the first thread ofCreditChecker (note this participant
has two threads, 2 and 5).

TP(I , 2) = ! chCC(s). s⊳ ack〈〉. s⊲ companyCheck(compName).

{ s⊳ good〈〉.

⊕

s⊳ bad〈〉. 0 }

Note no recursion is involved in this thread projection, simply because the thread 2 does
not occur inside the recursion.

Next we jump to Thread 5, which is another component ofCreditChecker.

TP(I , 5) = ! chCC(u). u ⊳ ack〈〉. u ⊲ personalCreditCheck(cred:adr)

(u ⊳ good〈〉

+

u ⊳ bad〈〉

Note the process does not include the recursion either. Thisis because it is inside a
recursion and it initiates a new thread there. As a result thecode is identical with the
projection onto Thread 2.

37

We now move to the projection onto the unique thread ofSeller, which is Thread 3.

TP(I , 3) = ! chS(t). t ⊳ ack〈〉. t ⊲ quoteReq(prod). chV(νr). t ⊲ ack().

µX. r ⊳ quoteReq〈prod〉. r ⊲ quoteRes(quote).

t ⊳ quoteRes〈quote + 10〉.

{ t ⊲ quoteOK(cred). chCC(νu). u ⊲ ack().

u ⊳ personalCreditCheck〈cred:adr〉.

{u ⊲ good(). chR(νp). p ⊲ ack()

p ⊳ deliv〈adr〉. p ⊲ conf()t ⊳ conf〈〉

+

u ⊲ bad(). t ⊳ CreditIsBad〈〉 }

+

t ⊲ quoteNoteOK(). X

As before, this thread starts outside of the recursion in theglobal description and is also
used inside, so that both the recursion and the recursion variable are used as they are,
leading to the recursive behaviour of the process. Note how the use of session functions
as a way to handle recursion appropriately in EPP.

The projection onto the unique thread ofVendor follows.

TP(I , 4) = ! chV(r). t ⊳ ack〈〉.

µX. r ⊲ quoteReq(prod). r ⊳ QuoteRes〈quote〉. X

Finally we end with the projection onto Thread 6, giving the simple behaviour of
RoyalMail.

TP(I , 6) = ! chR(p). p ⊳ ack〈〉. p ⊲ deliv(adr). p ⊳ conf〈〉

As before, Thread 6 does noont contain recursion since it is fully inside the (global)
recursion, initiating a thread there.

As noted, there are two threads (2 and 5) that belong to the same class of equivalence
i.e. they are part of the same service channelchCC. This means that we must merge
the two threads in the final EPP. By applying the merge operator, and noting they are
evidently mergeable, we get the following process:

! chCC(u). u ⊳ ack〈〉.

u ⊲





















personalCreditCheck(cred:adr). (u ⊳ good〈〉 ⊕ bad〈〉)
+

companyCheck(compName). (u ⊳ good〈〉 ⊕ bad〈〉)





















By which we have arrived at the endpoint behaviours of all participants realising the
original global description.

The projection works because of the linear usage of channelsinside each session
and service channel principle, as well as the three well-structuredness conditions. We

38

Table 5Semantics of the End-Point Calculus

(EP-I)
−

A[! ch(s̃). P | P′]σ | B[ch(νs̃). Q | Q′]σ′ → (νs̃) (A[! ch(s̃). P | P | P′]σ | B[Q | Q′]σ′)

(EP-C)
σ ⊢ e ⇓ v

A[s⊲ Σiopi(xi).Pi | P′]σ | B[s⊳ opj〈e〉. Q |Q′]σ′ → A[Pj | P′]σ[x7→v j] | B[Q | Q′]σ′

(EP-IT)
σ ⊢ e ⇓ tt

A[if e then P1 else P2 |P′]σ → A[P1 | P′]σ
(EP-P1)

M → M′

M|N → M′|N

(EP-IF)
σ ⊢ e ⇓ ff

A[if e then P1 else P2 |P′]σ → A[P2 | P′]σ
(EP-S)

i ∈ {1,2}
A[P1 ⊕ P2|R]σ → A[Pi |R]σ

(EP-R1)
A[P]σ → A[P′]σ′

A[(νs) P]σ → A[(νs) P′]σ
(EP-A)

σ ⊢ e ⇓ v
A[x := e. P |P′]σ → A[P | P′]σ[x7→v]

(EP-R2)
M → M′

(νs) M → (νs) M′
(EP-S)

M ≡ M′ M′ → N′ N′ ≡ N
M → N

(EP-R)
A[P[µX.P/X] | Q]σ | N → N′

A[µX.P | Q]σ | N → N′
(EP-P2)

A[P1 |R]σ → A[P′1 |R]σ′

A[P1 | P2 |R]σ → A[P′1 |P2 |R]σ

believe many business protocols conform to these conditions (modulo relaxation of con-
nectedness we discussed in the long version). How these conditions can be extended in
disciplined ways to allow more “untamed” protocols (such asthose involving excep-
tions) to be treated in the theory, is an interesting subjectof further studies.

B Appendix: the End-Point Calculus

This appendix lists the full reduction rules and typing system of the end-point calculus.

The full typing rules are listed in Tables 7 and 6. The rule (EP-TB) for input
in-session communication involves branching with distinct operators: the typing can
have less branches than the real process, so that the processis prepared to receive any
operator specified in the type. Rule (EP-TS) is its dual: the typing can have more
branches than the real process, so that the process invokes with operators at most those
specified in types. Combining (EP-TB) and (EP-TS), an output never tries to
invoke a non-existent option in its matching input.

Rule (EP-TS) is for typing the inputting side of initialisation. Note wedo not
allow those session channels other than the target of initialisation to be present as the
session typing in the premise: this preventsfreesession channels to be under the repli-

39

Table 6Session Types for Processes in the End-Point Calculus

(EP-TB)
K ⊆ J s∈ s̃ Γ ⊢ xj : θ j Γ ⊢A Pj ⊲ ∆ · s̃@A : α j

Γ ⊢ s⊲ Σi∈Jopi(xi).Pi ⊲ ∆ · s̃@A : s ◮ Σi∈Kopi(θi). αi

(EP-TS)
j ∈ J ⊆ K Γ ⊢ e : θi Γ ⊢A P ⊲ ∆ · s̃@A : α j

Γ ⊢A s⊳ opj〈e〉.P ⊲ ∆ · s̃@A : s ◭ Σi∈Kopi(θi). αi

(EP-TR1)
Γ ⊢A P ⊲ ∆, s̃1ss̃2 : ⊥
Γ ⊢A (νs) P ⊲ ∆, s̃1s̃2 : ⊥

(EP-TR2)
Γ ⊢A P ⊲ ∆, ε : ⊥
Γ ⊢A (νs) P ⊲ ∆

(EP-TS)
Γ ⊢A P ⊲ s̃@A:α

Γ, ch@A: (s̃)α ⊢A ! ch(s̃). P ⊲ ∅
(EP-TR)

Γ, ch@B: (s̃)α ⊢A P ⊲ ∆ · s̃@A : α

Γ, ch@B: (s̃)α ⊢A ch(νs̃).P ⊲ ∆

(EP-TP)
Γ ⊢A Pi ⊲ ∆i ∆1 ≍ ∆2

Γ ⊢A P1 | Q2 ⊲ ∆1 ⊙ ∆2
(EP-TI)

Γ ⊢ e : bool Γ ⊢A Pi ⊲ ∆

Γ ⊢A if e then P1 else P2 ⊲ ∆

(EP-TA)
Γ ⊢A x : θ Γ ⊢ e : θ Γ ⊢A P ⊲ ∆

Γ ⊢A x := e. P ⊲ ∆
(EP-TR)

Γ, X : ∆ ⊢A P ⊲ ∆

Γ ⊢A µX.P ⊲ ∆

(EP-TS)
Γ ⊢A P ⊲ ∆ Γ ⊢A Q ⊲ ∆

Γ ⊢A P⊕ Q ⊲ ∆
(EP-TV)

−

Γ,X : ∆ ⊢A X ⊲ ∆

(EP-TB)
Γ ⊢A P ⊲ ∆ {s̃} ∩ fsc(∆) = ∅

Γ ⊢A P ⊲ ∆ · s̃ : ⊥
(EP-TI)

Γ well-formed.
Γ ⊢A 0 ⊲ ∅

(EP-TE)
Γ ⊢A P ⊲ ∆ {s̃} ∩ fsc(∆) = ∅
Γ ⊢A P ⊲ ∆ · s̃@A : end

cated input, guaranteeing their linear usage. The typing inthe conclusion means (by our
convention) thatch or ch does not occur inΓ. The outputting side of initialisation (rule
(EP-TR)) is analogous, except that the linearity constraint needsnot be specified. We
assume thatA andB are not identical. The fact we allowch@B : (s̃)α to occur in the
premise means an invocation to a service can be done as many times as needed (as far
as it is type correct).

As for rule (EP-TP) and (EP-TPN) we need to define the operators≍ and⊙.

1. (compatibility, 1) We writeΓ1 ≍ Γ2 iff wheneverch occurs in bothΓ1 andΓ2, we
have: (1)ch@A : (s̃)α ∈ Γ1 andch@A : (s̃)α ∈ Γ2 or its symmetric case; or (2)
ch@A : (s̃)α ∈ Γ1,2; similarly, for eachX andx, we demand they have precisely the
same assignments when occuring in both.

40

Table 7Session Types for Networks in the End-Point Calculus

(EP-TP)
Γ ⊢A P ⊲ ∆ Γ ⊢ σ@A
Γ ⊢ A[P]σ ⊲ ∆

(EP-TPN)
Γ ⊢ N1 ⊲ ∆1 Γ ⊢ N2 ⊲ ∆2 ∆1 ≍ ∆2

Γ ⊢ N1 | N2 ⊲ ∆1 ⊙ ∆2

(EP-TEN)
Γ ⊢ M ⊲ ∆ {s̃} ∩ fsc(∆) = ∅
Γ ⊢ M ⊲ ∆ · s̃@A : end

(EP-TRN1)
Γ ⊢ M ⊲ ∆, s̃1ss̃2 : ⊥
Γ ⊢ (νs) M ⊲ ∆, s̃1s̃2 : ⊥

(EP-TBN)
Γ ⊢ M ⊲ ∆ {s̃} ∩ fsc(∆) = ∅

Γ ⊢ M ⊲ ∆ · s̃ : ⊥
(EP-TRN2)

Γ ⊢ M ⊲ ∆, ε : ⊥
Γ ⊢ M ⊲ ∆

(EP-TIN)
{s̃i} ∩ {s̃j} = ∅ (i , j)

Γ ⊢ ǫ ⊲ ∅

2. (composition, 1) SupposeΓ1 ≍ Γ2. ThenΓ1 ⊙ Γ2 is given as follows: (1)ch@A :
(s̃)α ∈ Γ1⊙Γ2 iff ch@A : (s̃)α ∈ Γi . (2)ch@A : (s̃)α ∈ Γ1⊙Γ2 iff ch@A : (s̃)α ∈ Γi

andch@A : (s̃)α < Γi . (3) For term variables and variables we simply take the
union.

3. (compatibility, 2) We write∆1 ≍ ∆2 iff, whenever ˜si@Ai : αi ∈ ∆i , we have either:
(1) {s̃1}∩{s̃2} = ∅; (2) s̃1 = s̃2 andfsc(α1)∩ fsc(α2) = ∅; or (3) s̃1 = s̃2 andα1 = α2.

4. (composition, 2) Suppose∆1 ≍ ∆2. Then∆1⊙∆2 is given as follows: (a) ˜s@A : α ∈
∆1⊙∆2 iff either (1)s̃@A : α ∈ ∆1 and{s̃} ∩ fsc(∆2) = ∅, or its symmetric case; (2)
α = α1 | α2, s̃1@A : α1 ∈ ∆1 ands̃2@A : α2 ∈ ∆1 such thatfsc(α1) ∩ fsc(α2) = ∅;
and (b)s̃ :⊥ iff s̃@A : α ∈ ∆1 ands̃@A : α ∈ ∆2.

C Types for checking Well-Threadedness

We now introduce the type discipline which types all and onlywell-threaded interac-
tions, via consistent global and local annotation. Given aninteractionI , we want to
check if it is well-threaded with respect to each thread compositionally. In order to
do so, we define a new type system that selects all those interactions which are well-
threaded. LetS,S′, . . . range over vectors of session channels.

Θ ::= Θ · τ : (↑,S) | Θ · τ : (↓,S) | Θ,X : Θ | ∅

Θ indicates, for each thread, associated session channels and the direction of the last
action. The judgement has the formΘ ⊢ A meaning that annotationA is well-threaded
under the assumption about open threads inΘ (“open” in the sense that it has not
been closed by initialisation). In Table 8 we report the typing rules where the function
activeT(A) takes the active thread ofA and the operationΘ1⊙Θ2 gives an new environ-
ment containing all thoseτ < dom(Θ1)∪dom(Θ2) and and for allτ ∈ dom(Θ1)∩dom(Θ2)
we have thatτ : Θ1(τ) ∪ Θ2(τ) where, with an abuse of notation, we mean that they
must have the same arrow and the union of the two session namessets. We use rule

41

Table 8Typing Rules for checking Wellthreadedness

(WT-I)
Θ, τ1 : (↓,S ⊎ S′}), τ2 : (↑,S′) ⊢ A activeT(A) = τ2 S′ ⊆ {s̃}

Θ, τ1 : (↑,S) ⊢ Aτ1 → Bτ2 : ch(s̃)(ν .)A

(WT-C)
Θ, τ1 : (↓,S1), τ2 : (↑,S2) ⊢ Ai activeT(Ai) = τ2 J , ∅

Θ, τ1 : (↑,S1 ∪ {s}), τ2 : (↓,S2 ∪ {s}) ⊢ Σi Aτ1→Bτ2 : s〈opi, ei , xi〉. Ai

(WT-A)
Θ ⊢ A activeT(Ai) = τ
Θ ⊢ x@Aτ := e. A

(WT-ITE)
Θ ⊢ Ai activeT(Ai) = τ
Θ ⊢ if e@Aτ then A1 else A2

(WT-S)
Θ ⊢ Ai activeT(Ai) = τ

Θ ⊢ A1 +A2
(WT-Z)

−

Θ, τ : ǫ ⊢ 0

(WT-R)
Θ, τ : (l, s) ⊢ A activeT(A) = τ

Θ, τ : (l, {}) ⊢ (νs) τA
(WT-V)

−

Θ,X : Θ ⊢ XA
τ

(WT-P)
Θi ⊢ Ai activeT(Ai) = τ
Θ1 ⊙ Θ2 ⊢ A1 |

τ
A2

(WT-R)
Θ,X : Θ ⊢ A activeT(A) = τ

Θ ⊢ µτXA
. A

(WT-PE)
Θ ⊢ Ei

Θ ⊢ E1 |
τ
E2

(WT-PE) for treating top-level parallel composition nodes (denoted byEi). This
corresponds to the requirement(G3) in the definition of consistent annotation.

We can now state the following theorem.

Theorem 25.

1. An annotated interactionA is consistent if and only ifΘ ⊢ A.
2. LetA be an annotation of I and letΘ ⊢ A. If (σ, I) → (σ′, I ′) then there exists an

annotationA′ of I′ such thatΘ ⊢ A′.

The typing system above induces a simple algorithm which caninductively annotate
interactions with threads and, along the way, checks its well-threadedness. For details
we refer the reader to [11].

C.1 Definitions for thread projections

This subsection definesτ1 ≡A τ2 used in the end point projection. We first define the
mappingthreads(A, ch) in Table 9. If two input threads are for the same service chan-
nel, then they are equivalent. Belowchannels(A) indicates the set of service channels
occurring inA.

42

Table 9 Inductive definition of the functionthreads

threads(Aτ1 → Bτ2 : ch(ν s). A′, ch)
def
=

{

{τ2} ∪ threads(A′, ch) if ch= ch′

threads(A′, ch) otherwise

threads(A, ch)
def
= threads(A′, ch) if A ∈ {Aτ1→Bτ2 : s〈op, x, . 〉A′, x@Aτ := e. A′, µXA

τ .A
′}

threads(A, ch)
def
= threads(A′1, ch) ∪ threads(A′2, ch) if A ∈ {if e@Aτ then A

′
1 else A

′
2, A

′
1 +A

′
2, A

′
1 | A

′
2}

threads(XA
τ , ch)

def
= threads(0, ch)

def
= ∅

Definition 26. Given a well-threaded annotated interactionA, for all τ ∈ A, we define
the equivalence class [τ]A ⊆ N as

[τ]A =































threads(A, ch) if ∃ ch∈ channels(A) s.t.
τ ∈ threads(A, ch)

{τ} otherwise.

Moreover, givenτ1 andτ2 in A, we writeτ1 ≡A τ2 whenever there existsτ ∈ A such
thatτ1, τ2 ∈ [τ]A.

43

